首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 274 毫秒
1.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

2.
This paper deals with the output consensus problem for uncertain nonstrict-feedback leader-follower multi-agent systems with predefined performance. A distributed event-triggered control strategy with dynamic threshold is proposed to update the actual control input and alleviate the computation burden of the communication procedure effectively. The unknown nonstrict-feedback structures are addressed by using the property of radial basis function neural networks. It is worth noting that in practical applications, the predefined performance often alternates between constrained and unconstrained cases in some extreme situations. To overcome this challenge, a novel coordinate transformation technique is incorporated to tackle both the two cases with and without performance constraint in a unified manner. As a result, the proposed event-triggered control approach ensures that the output consensus errors converge to zero asymptotically, and all the signals in the closed-loop system are bounded. Finally, the effectiveness of the proposed protocol is demonstrated by the simulation results.  相似文献   

3.
This paper studies the cooperative adaptive dual-condition event-triggered tracking control problem for the uncertain nonlinear nonstrict feedback multi-agent systems with nonlinear faults and unknown disturbances. Under the framework of backstepping technology, a new threshold update method is designed for the state event-triggered mechanism. At the same time, we develop a novel distributed dual-condition event-triggered strategy that combined the fixed threshold triggered mechanism acted on the controller with the new event-triggered mechanism, which can better reduce the waste of communication bandwidth. To deal with the algebraic loop problem caused by the non-affine nonlinear fault, the Butterworth low-pass filter is introduced. At the same time, the unknown function problems are solved by the neural network technology. All signals of the system are semiglobally uniformly ultimately bounded and the tracking performance is achieved, which proved by the Lyapunov stability theorem. Finally, the results of the simulation test the efficiency of the proposed control scheme.  相似文献   

4.
This article studies adaptive prescribed performance tracking control problem for a class of strict-feedback nonlinear systems with parametric uncertainties and actuator failures. Firstly, in order to compensate the multiple uncertainties and eliminate the influence of actuator failure, a new adaptive tracking controller based on first-order filter technology will be proposed, which simplifies the algorithm design process. Then, by introducing an asymmetric state transition function, the transient and steady performances of the output tracking error are both constrained such that the predetermined performance control goal is achieved. Moreover, to reduce the communication burden from the controller to the actuator, the event-triggered mechanism is designed, and there will be no Zeno phenomenon. Based on Lyapunov stability theory, it is strictly proved that output signal can track the reference signal and all the signals of the closed-loop system are bounded. Finally, a simulation example is performed and the results demonstrate effectiveness of the proposed strategy.  相似文献   

5.
The problem of event-triggered leader-following consensus control for semi-Markov multi-agent systems is investigated in this paper. A semi-Markov process is used to describe the sudden parameter changes between every agent. An adaptive event-triggered control strategy is proposed to make a balance between reducing unnecessary communication and meeting the required performance. A control protocol which can resist actuator faults is used to ensure the reliable leader-following consensus. By employing the Lyapunov–Krasovskii functional method, some sufficient conditions are provided to guarantee that the leader-following consensus can be achieved in mean-square sense. The consensus controller and the event-triggered parameter can be co-designed. Finally, the effectiveness of the proposed method is verified by a F-404 aircraft engine system.  相似文献   

6.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

7.
This paper investigates globally bounded consensus of leader-following multi-agent systems with unknown nonlinear dynamics and external disturbance via adaptive event-triggered fuzzy control. Different from existing works where filtering and backstepping techniques are applied to design controllers and event-triggered conditions, a matrix inequality is established to obtain the feedback gain matrix and event-triggered functions. To save communication resources, a new distributed event-triggered controller with fully discontinuous communication among following agents is designed. Meanwhile, a strictly positive minimum of inter-event time is provided to exclude Zeno behavior. Furthermore, to achieve globally bounded leader-following consensus, an adaptive fuzzy approximator and a parameter estimator are designed to approximate the unknown nonlinear dynamics and parameters, respectively. Finally, the effectiveness of the proposed method is validated via a simulation example.  相似文献   

8.
In this paper, the tracking control problem of uncertain Euler–Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.  相似文献   

9.
The event-triggered consensus control for second-order multi-agent systems subject to actuator saturation and input time delay, is investigated in this paper. Based on the designed triggering function, a distributed event-triggered control strategy is presented to drive the system to achieve consensus. Communication energy can be saved as the agents send their state information only at infrequent event instants, the continuous communication among agents is not necessary. Lyapunov-Krasovskii functional is used together with linear matrix inequality technique to analyze the stability of the closed-loop error system. The results show that agents achieve exponentially consensus under the proposed controller. Furthermore, the bounds of solution are obtained by establishing the differential equation associated with the first delay interval. The initial domain is estimated by optimizing the linear matrix inequalities. Finally, simulation examples are presented to illustrate the effectiveness of the proposed controller.  相似文献   

10.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

11.
This article considers the nonlinear time-delay system with full-state constrains and actuator hysteresis. Compared with the previous research on input hysteresis phenomenon, all states in the system are required to be constrained in a bounded compact set and the direction of hysteresis is unknown. Thus, the system is difficult to be stabilized and get perfect error tracking performance, and the design procedure is more complicated. By combining barrier Lyapunov functions (BLFs) and Nussbaum functions, a new virtual controller is designed, which combines the properties of Nussbaum function with fuzzy logic systems (FLSs). Furthermore, considering that the rate-dependent characteristic of actuator hysteresis will adversely affect the stability of networked control systems (NCSs), a first-order filter is used to solve the problem, but it brings challenges to the design of Lyapunov–Krasovskii functions (KLFs). Thus, a new LKFs is constructed to compensate for the adverse effects of state delay on the nonlinear system. What’s more, this article propose event-triggered technique to solve the coupling effect of the system communication resource constrains. The proposed adaptive control strategy ensures the boundedness of all signals and does not violate the state constraints, and the controller avoids Zeno behavior, and the tracking error fluctuates around zero in a predetermined compression range. Finally, two simulations results verify the effectiveness of the adaptive control strategy.  相似文献   

12.
This paper investigates the semi-global cooperative cluster output regulation problem of heterogeneous multi-agent systems with input saturation, the exosystems for each cluster can be different. To avoid using global information (e.g., the minimal nonzero eigenvalue of the Laplacian matrix) in the control protocol, an adaptive dynamic compensator is proposed to estimate exosystem’s state in fully distributed manner. A dynamic event-triggering mechanism with adaptive parameter is proposed in order to reduce the usage of communication resources. Low-gain feedback technique is utilized to deal with the influence of input saturation, and Lypunov-based stability analysis results are obtained. Moreover, it is formally shown that Zeno behavior can be excluded. The superiority of the proposed methods includes: the agents in each cluster are also heterogeneous, which is essentially different from [1]; the event-triggered control strategy does not depend on any global information; and the influence of saturation nonlinearity can be eliminated with low-gain feedback. Finally, a numerical example is provided to illustrate the effectiveness of the proposed methods.  相似文献   

13.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

14.
《Journal of The Franklin Institute》2023,360(14):10681-10705
This paper investigates dynamic event-triggered adaptive leader-following semi-global bipartite consensus (SGBC) of multi-agent systems (MASs) with input saturation. A dynamic event-triggered adaptive control (DETAC) protocol is presented, where the triggering function can regulate its threshold value dynamically. It’s turned out that the SGBC can be achieved via the DETAC protocol under some inequalities. Then, the proposed DETAC protocol is extended to solve bipartite consensus under jointly connected topology. Furthermore, the Zeno behaviors will be avoided. Finally, the rationality of proposed DETAC protocols are tested by simulation results.  相似文献   

15.
To decrease the communication frequency between the controller and the actuator, this paper addresses the spacecraft attitude control problem by adopting the event-triggered strategy. First of all, a backstepping-based inverse optimal attitude control law is proposed, where both the virtual control law and the actual control law are respectively optimal with respect to certain cost functionals. Then, an event-triggered scheme is proposed to realize the obtained inverse optimal attitude control law. By designing the event triggering mechanism elaborately, it is guaranteed that the trivial solution of the closed-loop system is globally exponentially stable and there is no Zeno phenomenon in the closed-loop system. Further, the obtained event-triggered attitude control law is modified and extended to the more general case when the disturbance torque cannot be ignored. It is proved that all states of the closed-loop system are bounded, the attitude error can be made arbitrarily small ultimately by choosing appropriate design parameters and the Zeno phenomenon is excluded in the closed-loop system. In the proposed event-triggered attitude control approaches, the control signal transmitted from the controller to the actuator is only updated at the triggered time instant when the accumulated error exceeds the threshold defined elaborately. Simulation results show that by using the proposed event-triggered attitude control approach, the communication burden can be significantly reduced compared with the traditional spacecraft control schemes realized in the time-triggered way.  相似文献   

16.
This paper addresses the problem of leader-follower consensus fault-tolerant control for a class of nonlinear multi-agent systems with output constraints. Specifically, a new nonlinear state transformation function is proposed to deal with the asymmetric constraint on output. Moreover, by integrating backstepping and radial basis function neural network approaches, an adaptive consensus control framework is developed with a single parameter estimator, which mitigates the computation of control algorithm in comparison with conventional adaptive approximation based control techniques. Then an adaptive compensation method is proposed to eliminate the effect of actuator failure. Under the proposed control scheme, all the closed-loop signals of the systems are bounded and the consensus tracking error converges to an adjustable small neighborhood of zero. To evaluate the developed control algorithm, a group of four networked two-stage chemical reactors is used to illustrate the effectiveness of the theoretic results obtained.  相似文献   

17.
This paper presents an improved adaptive design strategy for neural-network-based event-triggered tracking of uncertain strict-feedback nonlinear systems. An adaptive tracking scheme based on state variables transmitted from the sensor-to-controller channel is designed via only single neural network function approximator, regardless of unknown nonlinearities unmatched in the control input. Contrary to the existing multiple-function-approximators-based event-triggered backstepping control results with multiple triggering conditions dependent on all error surfaces, the proposed scheme only requires one triggering condition using a tracking error and thus can overcome the problem of the existing results that all virtual controllers with multiple function approximators should be computed in the sensor part. This leads to achieve the structural simplicity of the proposed event-triggered tracker in the presence of unmatched and unknown nonlinearities. Using the impulsive system approach and the error transformation technique, it is shown that all the signals of the closed-loop system are bounded and the tracking error is bounded within pre-designable time-varying bounds in the Lyapunov sense.  相似文献   

18.
In this paper, the target tracking control problem is investigated for an underactuated autonomous underwater vehicle (AUV) in the presence of actuator faults and external disturbances based on event-triggered mechanism. Firstly, the five degrees-of-freedom kinematic and dynamic models are constructed for an underactuated AUV, where the backstepping method is introduced as the major control framework. Then, radial basis function neural network (RBFNN) and adaptive control method are made full use of estimating and compensating the influences of uncertain information and actuator faults. Besides, the relative threshold event-triggered strategy is integrated into the tracking control to further reduce communication burden from the controller to the actuator. Moreover, through Lyapunov analysis, it is proved that the designed controllers guarantee that the tracking error variables of the underactuated AUV are uniformly ultimately bounded and can converge to a small neighborhood of the origin. Finally, the effectiveness and reasonableness of the designed tracking controllers are illustrated by comparative simulations.  相似文献   

19.
This work is concerned with the problem of reachable set synthesis for a class of singular systems with time-varying delay via the adaptive event-triggered scheme. Compared with the static event-triggered mechanism, the adaptive event-triggered mechanism can save the communication resources more effectively. By virtue of Lyapunov stability theory, sufficient conditions are given to guarantee the stability of the closed-loop system and that the reachable set of the resulting system is bounded by the obtained ellipsoid. In addition, by using linear matrix inequality technique and free-weighting matrix method, the weighting matrix of event-triggered condition and proportional-derivative (P-D) feedback controller gains are obtained. The effectiveness and superiority of the developed control approach are substantiated by a numerical example and two practical examples.  相似文献   

20.
In this paper, the problem of adaptive tracking control is investigated for nonlinear systems with asymmetric actuator backlash. We assume that the nonlinearities of the systems are unknown and the external disturbances are bounded. First, the control input will be quantized by a hysteresis-type quantizer, which can reduce the communication rate of the control signal. Then, the asymmetric actuator backlash is approximated to a new model, and a novel adaptive controller with the quantizer is designed via an adaptive backstepping technique to guarantee all the signals of the closed-loop tracking error system are uniform ultimate boundedness. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号