首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Pigeons were trained in an intratrial interference preparation in which a horizontal or vertical line was presented for 1 sec immediately following termination of a sample (red or green). Two samples were presented successively on interference trials. Choice of the comparison corresponding to the second (target) sample was designated correct and was reinforced, and choice of the comparison corresponding to the first (interfering) sample was designated incorrect and was not reinforced. Control trials involved the presentation of a single, target sample. A horizontal line was presented upon termination of an interfering sample, and a vertical line was presented upon termination of a target sample. The results of three experiments led to the conclusion that the horizontal line acquired and capacity to reduce postperceptual processing (rehearsal) of information derived from an immediately preceding sample stimulus. These findings include (1) convergence of accuracy on control and interference trials as training progressed, (2) a reduction in accuracy on control and especially on interference trials when the correlation between sample type (interfering or target) and cue type (horizontal or vertical) was reduced to zero, (3) higher accuracy (i.e., less interference) when the horizontal rather than the vertical line followed the interfering sample, and (4) higher accuracy on single-sample trials when the vertical rather than the horizontal line followed sample presentation.  相似文献   

2.
In Experiment 1, three food-deprived pigeons received trials that began with red or green illumination of the center pecking key. Two or four pecks on this sample key turned it off and initiated a 0- to 10-sec delay. Following the delay, the two outer comparison keys were illuminated, one with red and one with green light. In one condition, a single peck on either of these keys turned the other key off and produced either grain reinforcement (if the comparison that was pecked matched the preceding sample) or the intertrial interval (if it did not match). In other conditions, 3 or 15 additional pecks were required to produce reinforcement or the intertrial interval. The frequency of pecking the matching comparison stimulus (matching accuracy) decreased as the delay increased, increased as the sample ratio was increased, and decreased as the comparison ratio was increased. The results of Experiment 2 suggested that higher comparison ratios adversely affect matching accuracy primarily by delaying reinforcement for choosing the correct comparison. The results of Experiment 3, in which delay of reinforcement for choosing the matching comparison was manipulated, confirmed that delayed reinforcement decreases matching accuracy.  相似文献   

3.
Two experiments were performed to determine the effects of omitting the comparison stimuli in a matching-to-sample task. In Experiment 1, birds were trained initially on both symbolic and identity matching to sample. Comparison stimuli were then omitted following the presentation of a particular sample stimulus, and this decreased the number of sample (observing) responses. The reintroduction of the comparison stimuli on subsequent probe trials revealed that the accuracy of symbolic matching was reduced to chance levels, while identity matching accuracy was significantly below chance. In Experiment 2, a similar procedure was employed; however, observing responses to the comparison-omitted samples were maintained by direct reinforcement (fixed ratio 20). Matching accuracy during probe trials was again at chance levels for symbolic matching but, contrary to Experiment 1, was significantly above chance for identity matching. The differential effects of omitting comparison stimuli on symbolic and identity matching trials in these two experiments were interpreted within a framework which assumes that instructional processes are altered by comparison-omission procedures.  相似文献   

4.
The effect of differential outcome expectancies on memory for temporal and nontemporal information was examined. Pigeons were trained to match short (2-sec) and long (8-sec) sample durations to red and green comparison stimuli, and vertical and horizontal lines to vertical and horizontal comparison stimuli. In Experiment 1, one differential outcome (DO) group received food for correct choices on short-sample trials, whereas another received food for correct choices on long-sample trials. On line-orientation trials, half of each DO group received food for correct responses following vertical samples, whereas the other half received food for correct responses following horizontal samples. Overall retention was greater in the DO groups than in a nondifferential (NDO) group that received either food or no food for correct responses on a random half of all trials. Furthermore, although the NDO group displayed a choose-short bias for temporal samples, both DO groups displayed equivalent biases to select the comparison stimulus associated with food. In Experiment 2, differential outcome expectancies were extinguished off-baseline. Subsequently, in the first nondifferential outcome test session, the. DO groups performed less, accurately than the NDO group. These findings indicate that temporal samples are not retrospectively and analogically coded when they are differentially associated with food and no food. Instead, they are remembered in terms of the corresponding outcome expectancies.  相似文献   

5.
The development of excitatory backward associations in pigeons was demonstrated in three experiments involving conditional discriminations with differential outcomes. In Phase 1 of all three experiments, correct comparison choices following one sample were followed by food, whereas correct comparison choices following the other sample were followed by presentation of an empty feeder. In Phase 2, the food and no-food events that served as outcomes in Phase 1 replaced the samples. When the associations tested in Phase 2 were consistent with the comparison-outcome associations developed in Phase 1, transfer performance was significantly better than when the Phase 2 associations were inconsistent with the Phase 1 associations. In Experiment 1, an identity matching-to-sample task was used with red and green samples and red and green comparisons. In Experiment 2, a symbolic matching task was used with shape samples and hue comparisons, and it was shown that the backward associations formed were between the trial outcome (food or no food) and the correct comparison. In Experiment 3, it was determined that the transfer effects observed in these experiments did not depend on either the similarity of behavior directed toward the samples in the training and test phases, or the similarity of food and no-foodexpectancies generated by the samples in Phase 1 to food and no-foodevents presented as samples in Phase 2.  相似文献   

6.
Delayed matching-to-sample performance by pigeons was interfered with by displaying a monochromatic annulus around the center (sample) pecking key. The wavelength of the annulus and its point of interpolation within a trial were varied to determine possible differential effects on matching accuracy. Experiment 1 showed that delayed matching was most disrupted when the interference stimulus (570 nm, 630 nm, or achromatic white) appeared during the delay interval of a trial. Little if any disruption occurred when the interference stimulus was present during the sample and choice periods. The spectral relationship between the chromatic interference stimuli (570 and 630 nm) and the sample stimuli (570 and 630 nm) did not consistently influence the degree to which matching accuracy was affected in any interpolation condition. Experiment 2 found a similar pattern of within-trial effects when the interference stimulus was simply a change from a white achromatic annulus to a chromatic one. This finding indicates that illumination changes, such as the popular houselight variation, are not necessary to produce interference in delayed matching to sample. Even with illumination held constant, however, performance was not differentially sensitive to the similarity between interference and sample stimulus wavelengths. It is suggested that other experiments showing similarity effects in interference of delayed matching to sample were conducted in such a way that subjects confused the interfering stimuli with the samples.  相似文献   

7.
Pigeons were trained in a two-choice delayed matching-to-sample task with red and green hues. A brief postsample cue (a vertical or horizontal line) signaled whether the comparison stimuli would be presented or omitted on each trial. Comparison stimuli were always presented following the remember-cue (R-cue) trial, but never following the forget-cue (F-cue) and no-cue trials. In Experiment 1, matching accuracy on F-cue and no-cue trials was equivalent and was considerably inferior to accuracy on R-cue trials. In Experiment 2, the placement of the postsample cue was manipulated. Matching accuracy decreased as the R cue was delayed in the retention interval, but performance in the F-cue condition was not affected. These data indicate that the no-cue condition can function as an implicit F cue and that the R cue can function to initiate and maintain rehearsal.  相似文献   

8.
When differential outcomes follow correct responses to each of two comparison stimuli in matching to sample, relative to the appropriate control condition, higher matching accuracy is typically found, especially when there is a delay between the sample and the comparison stimuli. In two experiments, we examined whether this differential-outcomes effect depends on using outcomes that differ in hedonic value (e.g., food vs. water). In Experiment 1, we found facilitated retention when a blue houselight followed correct responses to one comparison stimulus and a white houselight followed correct responses to the other, prior to nondifferential presentations of food. In Experiment 2, we found facilitated retention again when a blue houselight followed correct responses to one comparison stimulus and a tone followed correct responses to the other, prior to nondifferential presentations of food. The results of both experiments indicate that the differential-outcomes effect does not depend on a difference in hedonic value of the differential outcomes, and they suggest that outcome anticipations consisting of relatively arbitrary but differential stimulus representations can serve as cues for comparison choice.  相似文献   

9.
Pigeons were trained to match temporal (2 and 8 sec of keylight) and color (red and green) samples to vertical and horizontal comparison stimuli. In Experiment 1, samples that were associated with the same correct comparison stimulus displayed similar retention functions; and there was no significant choose-short effect following temporal samples. This finding was replicated in Phase 1 of Experiment 2 for birds maintained on the many-to-one mapping, and it was also obtained in birds that had been switched to a one-to-one mapping by changing the comparison stimuli following color samples. However, in Phase 2 of Experiment 2, when the one-to-one mapping was produced by changing the comparison stimuli following temporal samples, a significant choose-short effect was observed. In Experiment 3, intratrial interference tests gave evidence of temporal summation effects when either temporal presamples or color presamples preceded temporal targets. This occurred even though these interference tests followed delay tests that failed to reveal significant choose-short effects. The absence of significant choose-short effects in Experiment 1 and in Phase 1 of Experiment 2 indicates that temporal samples are not retrospectively and analogically coded when temporal and nontemporal samples are mapped onto the same set of comparisons The interference test results suggest that the temporal summation effect arises from nonmemorial properties of the timing system and is independent of the memory code being used  相似文献   

10.
Common coding in pigeons was examined using a delayed conditional discrimination in which each sample stimulus was associated with two different comparison stimuli (one-to-many mapping). In Experiment 1, pigeons matched circle and dot samples to red and green hues and vertical and horizontal line orientations. In Experiment 2, the samples were red and green and the comparisons were vertical and horizontal spatial positions (up vs. down and left vs. right). Following acquisition to high levels of accuracy in each experiment, the associations between the samples and either both sets or only one set of comparisons were reversed. Pigeons learned the total reversals faster than the partial reversals. These results suggest that when different comparisons are associated with a common sample, they may become functionally equivalent.  相似文献   

11.
In Experiment 1, pigeons were trained to discriminate short (2 sec) and long (8 sec) durations of tone by responding to red and green comparison stimuli. During delay testing, a systematic response bias to the comparison stimulus correct for the long duration occurred. Tests of responding without the tone reduced accuracy on long-sample trials but not on short-sample trials suggesting that the pigeons were attending to the tone and not simply timing the total trial duration. The pigeons were then trained to match short (2 sec) and long (8 sec) durations of light to blue/yellow comparisons. During delay testing, “choose-long errors” occurred following tone durations, but “choose-short errors” occurred following light durations. In Experiment 2, accuracy was assessed on test trials in which the tone and the light signals were simultaneously presented for the same duration or for different durations. Pigeons responded accurately to durations of light, but were unable to accurately respond to durations of tone simultaneously presented with the light. The data from Experiment 1 suggest that there are important differences between light and tone signals with respect to the events that control the termination of timing. The data from Experiment 2 indicate that pigeons cannot simultaneously time visual and auditory signals independently and without interference. Consequently, they are inconsistent with the idea that there is a single internal clock that times both tone and light durations.  相似文献   

12.
Two pigeons matched to sample in a three-key operant conditioning chamber. In Experiment I, two different kinds of samples were presented on the center key.Element samples were members of one of two sample sets — colors (a red or blue disk) or lines (a vertical or horizontal orientation of a set of white lines). These samples were followed by their respective sample sets on the side keys as comparison stimuli.Compound samples consisted of a set of lines superimposed on a colored disk. Following these samples, either sample set could appear as comparison stimuli. Matching to compound samples was less accurate than matching to element samples. One interpretation is that sharing of attention among elements of a compound sample weakened stimulus control by each element. A different interpretation is that an element sample controlled matching better because it was physically identical to a comparison stimulus whereas a compound sample was not. Experiments II–IV evaluated this “generalization decrement” alternative by testing element- vs. compound sample control with both element and compound comparison stimuli. Irrelevant elements were added to form compound comparison stimuli, some of which were physically identical to a preceding compound sample, but never identical to an element sample. In all experiments, the addition of irrelevant elements of comparison stimuli reduced sample control. However, the generalization decrement hypothesis failed to predict how differences in performance maintained by element and compound samples were affected by different tests of sample control. Matching accuracy appeared to be independently determined by the number of elements in a sample and whether irrelevant elements were present during tests of sample control.  相似文献   

13.
Match-to-sample and oddity-from-sample problems with four colors were acquired by two pigeons under the supraordinate control of a line tilt superimposed on samples, Since the supraordinate stimulus terminated before the comparison stimuli were presented, accurate matching and oddity performance indicated trace stimulus control as well, The temporal extent of trace control was assessed in one subject by presenting probes—trials without a line tilt on the sample—in which the basis of correct responding was the supraordinate stimulus presented on the previous trial, Trace supraordinate control did not extend between trials, Subsequently, the delay between the termination of the supraordinate stimulus and the presentation of the comparison stimuli was gradually increased within a trial, Both subjects were able to perform matching and oddity over longer delays, and eventually on probe trials, although accuracy decreased, Results were discussed in terms of instructional stimulus control and memory.  相似文献   

14.
In the delayed matching of key location procedure, pigeons must remember the location of the sample key in order to choose correctly between two comparison keys. The deleterious effect of short intertrial intervals on key location matching found in previous studies suggested that pigeons’ short-term spatial memory is affected by proactive interference. However, because a reward expectancy mechanism may account for the intertriai interval effect, additional research aimed at demonstrating proactive interference was warranted. In Experiment 1, matching accuracy did not decline from early to late trials within a session, a finding inconsistent with a proactive interference effect. In Experiment 2, evidence suggestive of proactive interference was found: Matching was more accurate when the locations that served as distractors and as samples were chosen from different sets. However, this effect could have been due to differences in task difficulty, and the results of the two subsequent experiments provided no evidence of proactive interference. In Experiment 3, the distractor on Trialn was either the location that had served as the sample on Trialn ? 1 or one that had been a sample on earlier trials. Matching accuracy was not inferior on the former type of trial. In Experiment 4, the stimuli that served as samples and distractors were taken from sets containing 2, 3, 5, or 9 locations. Matching accuracy was no worse, actually slightly better, with smaller memory set sizes. Overall, these findings suggested that pigeons’ memory for spatial location may be immune to proactive interference. However, when, in Experiment 5, an intratrial manipulation was used, clear evidence of proactive interference was found: Matching accuracy was considerably lower when the sample was preceded by the distractor for that trial than when it was preceded by the sample or by nothing. Possible reasons why interference was produced by intratrial but not intertrial manipulations are discussed, as are implications of these data for models of pigeons’ short-term spatial memory.  相似文献   

15.
Four experiments assessed the role of reinforcement expectancies in the trial spacing effect obtained in delayed matching-to-sample by pigeons. In Experiment 1, a differential outcome (DO) group received reinforcement with a probability of 1.0 for correct comparison responses following one sample stimulus and a probability of 0.2 for correct comparison responses following the other sample stimulus. The nondifferential outcome (NDO) group received reinforcement with a probability of 0.6 for correct responses to either stimulus. While matching accuracy was higher for the DO group than for the NDO group, both groups showed an equivalent decline in accuracy as the intertriai interval (ITI) duration was decreased. However, within the DO group, ITI duration affected performance on low-probability-of-reinforcement trials but not on high-probability-of-reinforcement trials. In Experiment 2, delay interval (DI) duration was 5, 10, or 15 sec and accuracy was higher for the DO group than for the NDO group at all DI durations. In addition, accuracy decreased similarly on high- and low-probability-of-reinforcement trials for the DO group as DI was increased. In Experiment 3, all birds were studied under DO conditions and ITI duration was manipulated along with DI duration. At the short DI duration, decreasing ITI duration had a detrimental effect on low-probability-of-reinforcement trials but no effect on high-probability-of-reinforcement trials. At the long DI duration, decreasing ITI duration had detrimental effects on both types of trials. In Experiment 4, unsignaled ITI reinforcers disrupted accuracy when the DI was long and when the ITI was short. The applicability of scalar expectancy theory to these data is discussed.  相似文献   

16.
An attempt was madeto manipulate the strength of internal stimulus representations by exposing pigeons to brief delays between sample offset and comparison onset in a delayed conditional discrimination. In Experiment 1, pigeons were first trained on delayed conditional discrimination with either short (0.5-sec) delays or no delays. When delays were increased by 2.0 sec, birds trained with a delay performed at a higher level than did birds trained with no delays. In Experiment 2, subjects were first trained on a delayed simple discrimination. Following a circle stimulus, responses to a white key were reinforced; however, following a dot stimulus, responses to the white key were not reinforced. The pigeons were then trained on a delayed conditional discrimination involving hue samples and line-orientation comparisons with differential outcomes. Choice of vertical following red yielded food; choice of horizontal following green yielded no food. Mixed delays were then introduced to birds in Group Delay, whereas birds in the control group received overtraining. When tested on a delayed simple discrimination with hue stimuli (red and green initial stimuli followed by white response stimulus), pigeons in Group Delay tended to perform at a higher level than did birds in the control group (i.e., although the birds in both groups responded more following red than following green, birds in Group Delay did this to a greater extent than did birds in the control group). Thus, experience with delays appears to strengthen stimulus representations established during training.  相似文献   

17.
The effect of interference treatments on pigeons’ working memory for event duration was investigated, using a successive matching-to-sample procedure. In three experiments, birds were trained to match different keylight durations (2 or 6 sec) to different comparison colors (red or green) following delays of 0 to 12 sec. The interfering effect of delay-interval illumination and illumination change was assessed in Experiments 1 and 2. It was found that the absolute levels of houselight illumination influenced delayed matching accuracy. Birds trained with houselight illumination showed larger decrements in matching accuracy with increasing delays than did birds trained with darkened delay intervals. In addition, increases in delay-interval illumination relative to baseline produced greater interference with delayed matching accuracy than did decreases in houselight illumination relative to baseline. In Experiment 3, the effect of interpolated instructional cues to remember or forget was examined. As in other directed forgetting experiments employing conventional modality characteristics as the samples to be remembered, it was found that instructional cues to forget, presented during the delay interval, reduced matching accuracy compared to instructional cues to remember. It was concluded that these findings support models of temporal memory that assume temporal information is coded into categorical information onto some nontime dimension over models that assume temporal information is remembered amodally as specific time durations.  相似文献   

18.
In two experiments, pigeons were trained on many-to-one delayed matching in which samples of food and one hue were each associated with one shape comparison, and samples of no food and a different hue were each associated with a second shape comparison. When later tested with delays between sample and comparison stimuli, pigeons showed nonparallel delay functions, typically found with food and no-food samples (i.e., steeply declining food-sample delay functions, and relatively flat no-food-sample delay functions). Furthermore, the slopes of the hue-sample delay functions were similar to those on the food/no-food-sample trials. In Experiment 2, following many-toone delayed matching, when the hue samples were associated with new comparisons and then food and no-food samples replaced the hues, evidence was found for transfer of training indicative of the common coding of samples associated with the same comparison in original training. The transfer results suggest that the asymmetrical hue-sample functions resulted from the common coding of samples associated with the same comparison.  相似文献   

19.
The ability of pigeons to use event durations as remember (R) and forget (F) cues for temporal samples was examined. Pigeons were required to indicate whether a houselight sample stimulus was short (2 sec) or long (6 sec) by pecking a red or a green comparison stimulus. After training with a constant 10-sec delay interval, temporal cues (illumination of the center key) were presented 2 sec after the offset of the temporal samples. For one group, a short (2-sec) temporal cue served as the R cue and a long (6-3ec) temporal cue served as the F cue. This was reversed for a second group of birds. During training, comparison stimuli were always presented following the temporal R cue, but never following the temporal F cue. Tests for the effectiveness of the temporal R and F cues showed that F cues were equally effective in reducing matching accuracy in both groups of birds. It was concluded that pigeons used the duration of the cue to determine whether or not to rehearse the memory code for the temporal sample.  相似文献   

20.
In two experiments involving present/absent sample matching, we tested whether the visual stimuli or differential sample behavior served as the basis for comparison choice. In both experiments, one group (FR/DRO) was required to peck the present sample and to refrain from pecking the absent sample (as typically occurs with fixed duration present/absent samples), and the other group (FR/FR) was required to peck both samples. In Experiment 1, the samples were a black dot on a white field (present) and the white field alone (absent). In Experiment 2, the samples were a yellow hue (present) and a dark response key (absent). In both experiments, divergent retention functions were found only for the FR/DRO group. These results suggest that, in nonhedonic present/absent sample matching, it is the behavior directed toward the present sample, rather than the visual stimulus itself, that serves as the basis for comparison choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号