首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1定义的提出 设F1、F2分别是椭圆(或双曲线)的2个焦点,P是与焦点不共线的椭圆(或双曲线)上任一点,则称三角形PF1F2为此椭圆(或双曲线)的焦三角形.  相似文献   

2.
题 已知F1、F2是椭圆(或双曲线)的左右焦点,A、B是椭圆(或双曲线)上任意两点,过点A、B的切线相交于点P。  相似文献   

3.
在解析几何中,常出现求椭圆或双曲线的离心率的题目,其中焦点△PF1F2是关键.下面给出的两个离心率公式表明,只要能求出焦点△PF1F2的三个内角的正弦值,则椭圆或双曲线的离心率立即可得.  相似文献   

4.
在圆锥曲线中,有一个特殊的三角形,即若点P在椭圆(或双曲线)上,椭圆中△PF1F2的面积为b^2tan α/2,双曲线中△PF1F2的面积为b^2cot α/2(其中点F1、F2是焦点,∠F1PF2=α).这些公式,可用椭圆(双曲线)定义,结合余弦定理,三角公式推得.这里从略.我们运用这一面积公式去研究圆锥曲线的相关性质,使解题大为简化而巧妙.  相似文献   

5.
《数学通报》2004(5)文[1]的性质7给出了椭圆焦点三角形的一个性质,本文把它作为命题1在以椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点F1、F2及椭圆上任一点P(除长轴两端点外)为顶点的△F1PF2中,∠F1PF2的外角平分线为l,过焦点F2(或F1)作l的垂线,垂足为D,则点D的轨迹方程为x2+y2=a2(y≠0),(如下左图)本文先把命题1推广引申到双曲线、抛物的情形,再作进一步引申.命题2在以双曲线x2/a2?y2/b2=1(a>0,b>0)的两个焦点F1、F2及双曲线上任一点P(除实轴两端点外)为顶点的△F1PF2中,∠F1PF2的平分线为l,过焦点F2(或F1)作l的垂线,垂足为D,则点D的…  相似文献   

6.
1 问题的提出引例 已知椭圆 x249+y23 6=1上一点 M与椭圆两焦点 F1 、F2 连线的夹角∠ F1 MF2 =90°,试求 Rt△ F1 MF2 的面积 .我们把这种由椭圆或双曲线上的一点 M与其两个焦点 F1 、F2 所构成的△ F1 MF2 称作焦点三角形 .略解如下 :由 |MF1 |+|MF2 |=14与 |MF1 |2 +|MF2 |2 =5 2可得 |MF1 ||MF2 |= 72 ,所以 S△ F1MF2 =3 6.2 问题的推广我们把引例中的∠ F1 MF2 =90°改为∠ F1 MF2 =θ,并考虑分别求关于椭圆与双曲线的这种焦点三角形的面积 ,可得如下结论 .结论 1 如果椭圆 x2a2 +y2b2 =1( a >b >0 )上一点 M与两…  相似文献   

7.
定义椭圆或双曲线上一点和两焦点组成的三角形叫做焦点三角形;有一个角为直角的焦点三角形叫做焦点直角三角形.为了减少篇幅和方便叙述,先介绍几个一般性结论.性质P是椭圆x2/a2 y2/b2=1(a>c≥b>0,c是半焦距)或双曲线x2/a2-y2/b2=1(a>0,b>0,c是半焦距)上的一点,O是原点,E,F是椭圆  相似文献   

8.
<正>焦点三角形是指以椭圆(或双曲线)的焦距F1F2为底边,顶点P在椭圆(或双曲线)上的三角形.熟练掌握焦点三角形的性质,对培养创新能力和解题能力具有重要意义.例题双曲线x29-y216=1的焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为.分析设P(x0,y0),则|y0|就是点P到x轴的距离,故只需求出点P的纵坐标即可.解法1(辅助圆法)构造以焦点F1、F2为直径的辅助圆.由圆的知识可知,若点P在圆上,则F1PF2是直角三角形;若点P在圆内,则F1PF2是钝角三角形;若点P在圆外,则F1PF2是锐角三角形.  相似文献   

9.
试题如图,已知椭圆:x2/a2+y2/b2=1(a〉b〉0)的离心率为√2/2,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(√√+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,  相似文献   

10.
众所周知,椭圆的定义为:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆.我们知道这两个定点叫做椭圆的焦点,常数等于椭圆的长轴长.双曲线的定义为:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫双曲线.我们知道这两个定  相似文献   

11.
题目(2014年湖北高考题)已知F1,F1是椭圆和双曲线的公共焦点,P是他们的一个公共点,且∠F1PF2=π/3,则椭圆和双曲线的离心率的倒数之和的最大值为( )  相似文献   

12.
我们把由椭圆(双曲线)的两个焦点和椭圆(双曲线)上的一点构成的三角形称之为焦点三角形.焦点三角形在圆锥曲线中具有较重要的地位,同时也是历年高考的一个热点问题.在解决有关焦点三角形问题中,如果能灵活地应用焦点三角形的面积公式,往往可以使复杂问题简单化,减少运算量,使问题迎刃而解.本文就这方面进行初步的探讨.定理1设F1、F2为椭圆的两个焦点,点P为其上的动点,b为其短半轴长,则△F1PF2的面积为122tan12F PF2S?=b∠F PF.定理2设F1、F2为双曲线的两个焦点,点P为其上的动点,b为其虚半轴长,则△F1PF2的面积为122cot12F PF2S?=b…  相似文献   

13.
本讲主要涉及向量与圆锥曲线之间的关系的一类竞赛问题. 例1 已知椭圆T:(x2)/(a2)+(y2)/(b2)=1(a>b>0)和双曲线S:(x2)/(m2)+(y2)/(n2)=1(m>0, n>0)具有相同的焦点F(2,0).设双曲线S经过第一象限的渐近线为l.若焦点F和椭圆T上方的顶点B关于l的对称点都在双曲线S上,求椭圆T和双曲线S的方程.  相似文献   

14.
题目 (2010年高考山东卷理科第21题)已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√2/2,以该椭圆上的点和椭圆的左,右焦点F1,F2为顶点的三角形的周长为4(√2+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为以,B和C,D.(Ⅰ)求椭圆和双曲线的标准方程;  相似文献   

15.
圆锥曲线第一定义,是个重要概念,对它的准确理解与正确运用,是学好圆锥曲线的关键.本文以椭圆和双曲线说下其应用. 一、焦半径 [例1]设F1,F2是双曲线x2/16-y2/20=1的左、右焦点,点P在双曲线上,若点P到焦点F1的距离等于9,求点P到焦点F2的距离. 分析:已知双曲线上的点到一个焦点的距离,求该点到另一个焦点的距离是双曲线第一定义的直接利用形式.  相似文献   

16.
椭圆、双曲线上的点与两个焦点1F 、2F 所成的三角形,常称之为焦点三角形。解焦点三角形问题经常使用三角形边角关系定理,解题中,通过变形,使之出现?PF1+PF2=2a,或PF1?F2=±2 a,然后找到相关关系,进行解题。  相似文献   

17.
所谓焦点三角形,就是圆锥曲线的两个焦点F1,F2与圆锥曲线上的任意一点P,组成的三角形.它在圆锥曲线中有着重要的地位.下面分椭圆与双曲线两部分进行探讨.  相似文献   

18.
2011年北大保送生考试第1题为:点P为双曲线上任一点,PQ为双曲线在点P处的切线.F1,F2为双曲线的焦点.求证:PQ平分∠F1PF2.运用类比思想,我们可以将上述结论推广到椭圆和抛物线.  相似文献   

19.
在椭圆和双曲线的焦点三角形中,我们易推出其面积公式: 命题1 设F1、F2是椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点,P是异于长轴端点的椭圆上一点,若∠F1PF2=θ,则△PF1F2的面积S=b2tanθ/2(Ⅰ).  相似文献   

20.
笔者最近对椭圆和双曲线焦点三角形做了些研究 ,得到了两个十分有趣的重要的轨迹 ,现说明如下 ,供读者参考 .定义 以椭圆或双曲线上一点和两焦点组成的三角形叫焦点三角形 .1 椭圆焦点三角形内心轨迹定理 1 设P是椭圆b2 x2 +a2 y2 =a2 b2 (a >b >0 )上的一点 ,E( -c,0 )、F(c,0 )分别是左、右焦点 ,e是椭圆的离心率 ,则△PEF的内心轨迹是椭圆 x2c2 +y2( eb1 +e) 2=1 ,且该椭圆长轴与原椭圆长轴之比等于原椭圆的离心率e.证明 :设A (x ,y)是△PEF的内心 ,PA交x轴于点B ,如图1 .由三角形内角平分线性质知|BA||AP|=|EB||EP|=|FB||F…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号