首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, a novel technique is suggested for the adaptive non-linear model predictive control based on the fuzzy approach in three stages. In the presented approach, in the first stage, the prediction and control horizons are obtained from a fuzzy system in each control step. Another fuzzy system is employed to determine the weight factors before the optimization stage of developing new controller. The proposed controller gives the parameters of the model predictive control (MPC) in each control step in order to improve the performance of nonlinear systems. The proposed control scheme is compared with the traditional MPC and Generic Model Control for controlling MED-TVC process. The performances of the three proposed controllers have been investigated in the absence and presence of disturbance in order to evaluate the stability and robustness of the proposed controllers. The results reveal that the novel adaptive controller based on fuzzy approach performs better than the two other controllers in set-point tracking and disturbance rejection with lower IAE criteria. In addition, the average computational time for the adaptive MPC exhibits a decline of 34% in comparison with the traditional MPC.  相似文献   

2.
The current work proposes a decentralized adaptive dynamic surface control approach for extracting the maximum power from a photovoltaic (PV) system and then regulating the required voltage for charging the battery. In this regard, two cascaded direct current-direct current (DC-DC) converters are utilized. The boost converter is interposed between the PV system and the load to help extract the maximum power. The buck-boost converter is then exploited to maintain the output voltage at a specified level which must meet the battery demand. Therefore, to handle the interactions between the cascaded converters, a decentralized control approach is developed. In the suggested approach, by introducing a nonlinear filter, an effective dynamic surface control (DSC) scheme is proposed with guaranteeing asymptotic tracking convergence. Further, by incorporating a nonlinear compensation term into the proposed control approach, the robustness of the resulting controller is improved. In addition, since the model of the converters is nonlinear with unknown uncertainties, the neuro-fuzzy system is used to estimate lumped uncertainties. The proposed control method has good attributes in terms of having a low tracking error, an excellent transition response, and a quick response to changes in atmospheric conditions. The stability of the whole control system is proved by the Lyapunov stability theorem. Finally, comprehensive simulation results are performed to validate the effectiveness of the suggested control approach.  相似文献   

3.
This paper presents the design of a hysteresis band controller to regulate the switching frequency in a sliding mode controlled nonlinear Boost power converter. The proposed architecture relies on a piecewise linear modeling of the switching function behavior within the hysteresis band, and consists of a continuous-time integral-type controller that modifies the amplitude of the hysteresis band of the comparator in accordance with the error between the desired and the actually measured switching period. The study provides the dynamical models of the converter operating in sliding mode and the switching frequency control loop. Moreover, the design of the parameters of both the sliding mode control and the switching frequency controller guarantee the fulfilment of the desired output voltage regulation of the Boost converter and the steady state setting of the switching frequency with a known, taylored dynamics. A Boost power converter prototype has been built to validate the proposal. Experimental results confirm the predicted good performance of the controllers, as well as the robustness with respect to changes in the switching frequency reference and the system parameters.  相似文献   

4.
This paper presents an integrated and practical control strategy to solve the leader–follower quadcopter formation flight control problem. To be specific, this control strategy is designed for the follower quadcopter to keep the specified formation shape and avoid the obstacles during flight. The proposed control scheme uses a hierarchical approach consisting of model predictive controller (MPC) in the upper layer with a robust feedback linearization controller in the bottom layer. The MPC controller generates the optimized collision-free state reference trajectory which satisfies all relevant constraints and robust to the input disturbances, while the robust feedback linearization controller tracks the optimal state reference and suppresses any tracking errors during the MPC update interval. In the top-layer MPC, two modifications, i.e. the control input hold and variable prediction horizon, are made and combined to allow for the practical online formation flight implementation. Furthermore, the existing MPC obstacle avoidance scheme has been extended to account for small non-apriorily known obstacles. The whole system is proved to be stable, computationally feasible and able to reach the desired formation configuration in finite time. Formation flight experiments are set up in Vicon motion-capture environment and the flight results demonstrate the effectiveness of the proposed formation flight architecture.  相似文献   

5.
Stability and energy consumption have always been important issues in electric vehicle research. Excessive slip energy not only aggravates tire wear, but also consumes energy of electric vehicle. In order to ensure the lateral stability and to reduce the slip energy dissipation of the distributed drive electric vehicle (DDEV) equipped with Mechanical Elastic Wheel (MEW), an integrated framework considering both tire slip energy dissipation and lateral stability control is proposed. The SESC (Slip Energy and Stability Control) is a hierarchical control framework for DDEV with MEW. A PID speed tracking controller and an (Integral Terminal Slide Mode) ITSM controller are designed at the upper-level controller. The ITSM controller can improve the lateral stability of the vehicle by obtaining the desired yaw moment. Speed tracking controller can stabilize the speed of the vehicle and obtain the desired longitudinal force. At the lower-level controller, the brush model of the MEW is proposed to express tire slip energy. In order to reduce the error of the vehicle dynamics and the slip energy dissipation, a mixed objective function including a holistic corner controller (HCC) and a minimum tire slip energy characterization is proposed. The proposed control framework is verified by Carsim and Matlab/Simulink under emergency simulation conditions. The simulation results show that the SESC based method can improve the lateral stability of DDEV with MEW effectively, and has better performance compared with fuzzyPID+AD based method. Meanwhile, the SESC achieves less slip energy than conventional torque distribution method.  相似文献   

6.
The recent transition in power generation and consumption is based on the integration of renewable energy sources using DC microgrids. To facilitate this integration, a multi-source DC microgrid structure with wind, photovoltaics, fuel cell and hybrid energy storage system including battery and supercapacitor is presented in this paper. These sources are linked to a DC-bus via DC-DC converters. A hierarchical control strategy with a device and a system-level control for coordinated control between energy sources and their storage devices is proposed. In the device-level control, a variable structure based sliding mode control is applied to regulate the DC bus voltage and to ensure global asymptotic stability. Whereas, the system-level control compensates for the supply and demand mismatches by using a rule-based fuzzy system. To verify the effectiveness of the proposed scheme and the superiority of one controller over another, the proposed controllers are simulated and compared in the MATLAB/Simulink environment under varying load and weather data conditions. Results show that super twisting sliding mode control had negligible chattering as well as better convergence as compared to controllers. Furthermore, the efficiency of the developed scheme is validated by controller hardware in loop experiments.  相似文献   

7.
8.
The interconnected large-scale power systems are liable to performance degradation under the presence of sudden small load demands, parameter ambiguity and structural changes. Due to this, to supply reliable electric power with good quality, robust and intelligent control strategies are extremely requisite in automatic generation control (AGC) of power systems. Hence, this paper presents an output scaling factor (SF) based fuzzy classical controller to enrich AGC conduct of two-area electrical power systems. An implementation of imperialist competitive algorithm (ICA) is made to optimize the output SF of fuzzy proportional integral (FPI) controller employing integral of squared error criterion. Initially the study is conducted on a well accepted two-area non-reheat thermal system with and without considering the appropriate generation rate constraint (GRC). The advantage of the proposed controller is illustrated by comparing the results with fuzzy controller and bacterial foraging optimization algorithm (BFOA)/genetic algorithm (GA)/particle swarm optimization (PSO)/hybrid BFOA-PSO algorithm/firefly algorithm (FA)/hybrid FA-pattern search (hFA-PS) optimized PI/PID controller prevalent in the literature. The proposed approach is further extended to a newly emerged two-area reheat thermal-PV system. The superiority of the method is depicted by contrasting the results of GA/FA tuned PI controller. The proposed control approach is also implemented on a multi-unit multi-source hydrothermal power system and its advantage is established by Correlating its results with GA/hFA-PS tuned PI, hFA-PS/grey wolf optimization (GWO) tuned PID and BFOA tuned FPI controllers. Finally, a sensitivity analysis is performed to demonstrate the robustness of the proposed method to broad changes in the system parameters and size and/or location of step load perturbation.  相似文献   

9.
The main results of this paper are concentrated on the nonlinear model predictive control (MPC) tracking optimization based on high-order fully actuated (HOFA) system approaches. The proposed HOFA MPC strategy makes full use of full-actuation property to eliminate the nonlinear dynamics of the system, and then the nonlinear optimization problem is equivalently transformed into a series of easy-solve linear convex optimization problems. Different from general nonlinear MPC methods and the current optimal control of the HOFA system approach, an analytical controller with smooth and less energy is obtained by the moving horizon optimization. And it is proven that the proposed controller can stabilize the corresponding tracking error closed-loop system. Finally, not limited to FA systems, as examples, a nonlinear numerical under-actuated model in the mathematical sense and a benchmark nonlinear under-actuated mechanical system are transformed into corresponding equivalent HOFA systems, the simulation results are given to verify the effectiveness of the proposed strategy.  相似文献   

10.
Today, the quality of accessible power and the response of the system involved are most significant. Many controllers have been used by researchers dealing with issues pertaining to power. Controllers play a significant role in the renewable energy sector in terms of improving the quality of power and offering a speedy system response. This research analyzes the speed of response and harmonics and enhances system performance overall. The existing system consists of a photovoltaic panel, boost converter, multi-level inverter, classic proportional-integral (PI) controller, and three-phase induction motor. The proposed system comprises a photovoltaic-based multi-level inverter, fuzzy logic controller, buck-boost converter, and three-phase induction motor. The output of the photovoltaic panel is connected to a buck-boost converter, and that of the converter to an inverter, while the output of the seven-level multi-level inverter is connected to a three-phase induction motor. Motor speed is controlled by a fuzzy logic controller (FLC). The output of the proportional-integral (PI) controller is compared to that of the fuzzy logic controller. The behavior and performance of the existing system are verified with experimental setup and proposed system are verified by MATLAB and Simulink, and the results recorded.  相似文献   

11.
The high-performance control requires the system to be stable, fast and accurate simultaneously. However, various systems (e.g., motors, industrial robots) generally face technical challenges such as nonlinearities, uncertainties, external disturbances and physical constraints, which make it difficult to reach the hardware potential of the systems to track the desired trajectories when satisfying the high-performance control requirements. Therefore, take a two-order nonlinear system for example, an optimization-based adaptive neural sliding mode control based on a two-loop control structure is proposed in this paper, where the outer and inner loops are designed separately to achieve different control requirements. Namely, the outer loop is designed as a model predictive control (MPC)-based optimization problem, which can optimize the desired trajectories to meet the state and input constraints, and maximize the converging speed of transient response as fast as possible, and the inner loop is designed with a recurrent neural network (RNN)-based adaptive neural sliding mode controller, which can guarantee the tracking of the replanned desired trajectories from outer loop as accurate as possible. The stability of the system is guaranteed by Lyapunov theorem, the optimal tracking performance is achieved under nonlinearities, uncertainties, external disturbances and physical constraints, and comparative simulation with a motor system is carried out to verify the effectiveness and superiority of the proposed approach.  相似文献   

12.
This paper proposes a fuzzy model predictive control (FMPC) combined with the modified Smith predictor for networked control systems (NCSs). The network delays and data dropouts are problems, which greatly reduce the controller performance. For the proposed controller, the model of the controlled system is identified on-line using the Takagi – Sugeno (T-S) fuzzy models based on the Lyapunov function. There are two internal loops in the proposed structure. The first is the loop around the FMPC, which predicts the future outputs. The other is the loop around the plant to give the error between the system model and the actual plant. The proposed controller is designed for controlling a DC servo system through a wireless network to improve the system response. The practical results based on MATLAB/SIMULINK are established. The practical results are indicated that the proposed controller is able to respond the networked time delay and data dropouts compared to other controllers.  相似文献   

13.
This paper proposes to use a hybrid Stochastic Fractal Search (SFS) and Local Unimodal Sampling (LUS) based multistage Proportional Integral Derivative (PID) controller consisting of Proportional Derivative controller with derivative Filter (PDF) plus (1 + Proportional Integral) for Automatic Generation Control (AGC) of power systems. Initially, a single area multi-source power system consisting of thermal hydro and gas power plants is considered and parameters of Integral (I) controller is optimized by Stochastic Fractal Search (SFS) algorithm. The superiority of SFS algorithm over some recently proposed approaches such as optimal control, Differential Evolution (DE) and Teaching Learning Based Optimization (TLBO) is demonstrated. To improve the system performance further, LUS is subsequently employed. The study is further extended for different controllers like PID, and proposed multistage PID controller and the superiority of multistage PID controller over conventional PID controller structure is demonstrated. The study is further extended to a two-area six unit multi-source interconnected power system and the superiority of proposed approach over, TLBO and optimal control is demonstrated. Finally the study is extended to a three unequal area system power system with appropriate nonlinearities such as Generation Rate Constraint (GRC), Governor Dead Band (GDB) and time delay. From the analysis, it is found that hybrid SFS–LUS algorithm is superior to the original SFS algorithm and substantial improvement in system performance are realized with proposed multistage PID controller over conventional PID controller structure.  相似文献   

14.
15.
This paper presents a robust scheme for fixed-time tracking control of a multirotor system. The aircraft is subjected to matched lumped disturbances, i.e., unmodeled dynamics, parameters uncertainties, and external perturbations besides measurement noise. Firstly, a novel Nonlinear Homogeneous Continuous Terminal Sliding Manifold (NHCTSM) based on the weighted homogeneity theory is presented. The sliding manifold is designed with prescribed dynamics featuring Global Asymptotic Stability (GAS) and fixed-time convergence. Then, a novel Fixed-time Non-switching Homogeneous Nonsingular Terminal Sliding Mode Control (FNHNTSMC) is proposed for the position and attitude loops by employing the developed NHCTSM and an appropriate reaching law. Moreover, the control framework incorporates a disturbance observer to feedforward and compensate for the disturbances. The designed control scheme can drive the states of the system to the desired references in fixed-time irrespective of the values of the Initial Conditions (ICs). Since the existing works on homogeneous controllers rely on the bi-limit homogeneity concept in the convergence proofs, the estimate of the settling-time or its upper-bound cannot be given explicitly. In contrast, this study employs Lyapunov Quadratic Function (LQF) and Algebraic Lyapunov Equation (ALE) in the stability analysis of both controller and observer. Following this method, an expression of the upper-bound of the settling-time is explicitly derived. Furthermore, to assure the Uniform Ultimate Boundedness (UUB) of all signals in the feedback system, the dynamics of the observer and controller are jointly analyzed. Simulations and experiments are conducted to quantify the control performance. The proposed approach achieves superior performance compared with recent literature on fixed-time/finite-time control and a commercially available PID controller. The comparative results witness that the developed control scheme improves the convergence-time, accuracy, and robustness while overcoming the singularity issue and mitigating the chattering effect of conventional SMC.  相似文献   

16.
This paper proposes a novel Hermite neural network-based second-order sliding-mode (HNN-SOSM) control strategy for the synchronous reluctance motor (SynRM) drive system. The proposed HNN-SOSM control strategy is a nonlinear vector control strategy consisting of the speed control loop and the current control loop. The speed control loop adopts a composite speed controller, which is composed of three components: 1) a standard super-twisting algorithm-based SOSM (STA-SOSM) controller for achieving the rotor angular speed tracking control, 2) a HNN-based disturbance estimator (HNN-DE) for compensating the lumped disturbance, which is composed of external disturbances and parametric uncertainties, and 3) an error compensator for compensating the approximation error of the HNN-DE. The learning laws for the HNN-DE and the error compensator are derived by the Lyapunov synthesis approach. In the current control loop, considering the magnetic saturation effect, two composite current controllers, each of which comprises two standard STA-SOSM controllers, are designed to make direct and quadrature axes stator current components in the rotor reference frame track their references, respectively. Comparative hardware-in-the-loop (HIL) tests between the proposed HNN-SOSM control strategy and the conventional STA-SOSM control strategy for the SynRM drive system are performed. The results of the HIL tests validate the feasibility and the superiority of the proposed HNN-SOSM control strategy.  相似文献   

17.
This paper deals with the simultaneous coordinated design of power system stabilizer (PSS) and the flexible ac transmission systems (FACTS) controller. The problem of guaranteed cost reliable control with regional pole constraint against actuator failures is investigated. The state feedback controllers are designed to guarantee the closed loop system satisfying the desired pole region, thus achieving satisfactory oscillation damping and settling time, and having the guaranteed cost performance simultaneously. The proposed controllers satisfy desired dynamic characteristics even in faults cases. The controller's parameters are obtained using the linear matrix inequalities (LMI) optimization. Simulation results validate the effectiveness of this approach.  相似文献   

18.
《Journal of The Franklin Institute》2023,360(14):10605-10632
Relative degree (RD) approach is a powerful tool for obtaining system's input-output dynamics used for output tracking controller designs of minimum phase systems. Designs using the RD alone can fail due both to insufficient control authority in minimum phase systems, and instability of internal/zero dynamics attributed to nonminimum phase systems. A novel definition and a concept of Practical Generalized RD (PGRD) are proposed in this paper and are used in concert with Sliding Mode Control (SMC) to compensate for system perturbations in minimum phase systems. The use of known Generalized Relative Degree (GRD) in nonminimum phase systems allows for the elimination of internal dynamics. However, instability that emerges in the corresponding control dynamic extension is defeating any output tracking controller design. A novel methodology of using GRD for designing continuous SMC in nonminimum phase systems is presented. An algorithm for generating a bounded solution of the unstable dynamic extension is proposed and used in concert with SMC, allowing robust control design for nonminimum phase systems. The efficacy of the proposed GRD-based approaches is demonstrated on a minimum and nonminimum phase rocket attitude control problem both analytically and via simulation.  相似文献   

19.
This paper considers the trajectory tracking for a cable-suspended rigid body carried by multiple quadrotors while maintaining the desired formation. A three-loop control structure is proposed based on the Super Twisting Sliding Mode (STSM) controller with high robustness to compensate for uncertainties and disturbances. In the proposed structure, a proper formation based on a centralized approach creates advantages such as collision avoidance and non-entanglement of the cables, which leads to uniform load distribution on all quadrotors to optimize energy consumption. The corresponding equations are formulated as a convex constrained optimization problem with an analytical solution for calculating the cables' tension. This approach is a straightforward and computationally efficient method for real-time applications. In addition to proving the system's stability by Lyapunov theory, the simulation results show good performance in the presence of disturbance and uncertainty.  相似文献   

20.
This paper addresses the modelling and control of switched systems with Boolean inputs. A generalization of Passivity Based Control (PBC) is proposed and fitted to bond graph formalism. The state equations of the equivalent average model are first deduced from the original bond graph using the notion of commutation cells and then interpreted according to Port Controlled Hamiltonian formalism. The whole approach is presented in a formal way. This method is then applied on a multicellular serial converter, which is widespread in power systems and of growing interest. The application of PBC associated to a modelling approach using commutation cells on a non-trivial example shows its efficiency to determine a generic controller, the number of elementary cells being considered as a parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号