首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An algorithm for constructing a black box model of the sinusoidal input/steady-state response behavior of nonlinear time-invariant systems over a set of frequencies and amplitudes is presented. It is assumed that the steady-state response is periodic of the same fundamental frequency as the excitation, and that the Fourier coefficients are continuous functions of amplitude and square-integrable functions of frequency. The algorithm converges, in a mean-square sense, to an exact representation of the first N harmonics of the steady-state response minus its d.c. component. The model constructed by the algorithm admits a relatively simple physical realization characterized by 2NM+1 linear dynamic elements, and N(2M+1)+1 nonlinear static elements. The underlying mathematical structure of the model is an orthogonal series expansion relative to time whose coefficients are themselves truncated orthogonal expansions relative to frequency. Here M, the number of harmonics used for frequency interpolation, is determined by the algorithm. Of the N(2M+1)+1 memoryless nonlinearities which characterize the model, N of these are specified ahead of time (Tchebysheff polynomials), and 2NM+1 are parameters which mold the representation to the specific system being modeled. Each of these functions of a single variable can be obtained in a pointwise manner directly from steady-state measurements. The algorithm was implemented on a digital computer, and forced versions of the classic equations of van der Pol and Duffing were run as examples. An additional analytic example of a frequency multiplier of prescribed bandwidth was also presented.  相似文献   

2.
A new method for obtaining reduced order models for single-input-single-output, continuous-time systems is presented. The proposed algorithm matches the transfer functions of the original and the reduced system at 2M points where M is the order of the reduced model. The location of these points depends on a parameter which can be selected to control the accuracy of the approximation and stability. Numerical examples and comparisons with other methods of model reduction are given.  相似文献   

3.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

4.
The present work proposes a complementary pair of orthogonal triangular function (TF) sets derived from the well-known block pulse function (BPF) set. The operational matrices for integration in TF domain have been computed and their relation with the BPF domain integral operational matrix is shown. It has been established with illustration that the TF domain technique is more accurate than the BPF domain technique as far as integration is concerned, and it provides with a piecewise linear solution.As a further study, the newly proposed sets have been applied to the analysis of dynamic systems to prove the fact that it introduces less mean integral squared error (MISE) than the staircase solution obtained from BPF domain analysis, without any extra computational burden. Finally, a detailed study of the representational error has been made to estimate the upper bound of the MISE for the TF approximation of a function f(t) of Lebesgue measure.  相似文献   

5.
For the approximation of real functions in L2(0, ∞) that are frequently encountered in signal analysis and parameter identification, analytical and computer studies suggest the use of Laguerre functions. Such functions can form at least locally optimal or near-optimal sets. The results are shown for continuous systems to be encouragingly flat, indicating low sensitivity to the position of the Laguerre multiple pole. Relationships to linear time-invariant discrete systems are given, using discrete Laguerre functions.  相似文献   

6.
In this paper, an iterative learning control strategy is presented for a class of nonlinear pure-feedback systems with initial state error using fuzzy logic system. The proposed control scheme utilizes fuzzy logic systems to learn the behavior of the unknown plant dynamics. Filtered signals are employed to circumvent algebraic loop problems encountered in the implementation of the existing controllers. Backstepping design technique is applied to deal with system dynamics. Based on the Lyapunov-like synthesis, we show that all signals in the closed-loop system remain bounded over a pre-specified time interval [0,T]. There even exist initial state errors, the norm of tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity and the learning speed can be easily improved if the learning gain is large enough. A time-varying boundary layer is introduced to solve the problem of initial state error. A typical series is introduced in order to deal with the unknown bound of the approximation errors. Finally, two simulation examples show the feasibility and effectiveness of the approach.  相似文献   

7.
针对一类不确定非线性时滞系统,提出了一种具有确定逼近域的自适应模糊控制器的设计方案。在动态面控制(DSC)的基础上,通过时滞代换技巧,使得自适应模糊逼近器的输入为参考信号,从而可以明确定义逼近域,同时可以处理系统中完全未知的时滞信号。基于Lyapunov-Krasovskii范函,证明闭环系统所有信号为半全局一致有界的,并且跟踪误差可以收敛到原点附件的一个小邻域内。仿真结果进一步说明了该方法的有效性。  相似文献   

8.
The problem of designing robust systems for the detection of stochastic signals in noise is considered for the large-sample-size, small-signal case. By applying two previously-established models for the detection of stochastic signals, known results for the robust detection of deterministic signals are extended on a limited basis to the stochastic- signal case. The proposed detectors are seen to be robust over a class of possible noise statistics, based on a Huber-Tukey mixture model, which contains noises characterized by heavy-tailed probability density functions. In addition, numerical results are presented which verify the robustness property of the proposed detectors over wider classes of noise mixtures.  相似文献   

9.
This study presents a novel frequency synchronization scheme for orthogonal frequency division multiple access uplink systems. The proposed approach first estimates the carrier frequency offset (CFO) from the zeros of a backward prediction system. Then, based on the CFO estimates, two types of filters, namely zero-forcing and the linearly constrained minimum variance filters, are developed to suppress multiple access interference (MAI). Computer simulation results show that in addition to having a reduced computational complexity, the proposed algorithm has reliable CFO estimates and possesses at least a 3-dB power gain in MAI suppression over conventional minimum mean square error algorithms for frequency synchronization.  相似文献   

10.
This paper focuses on the problem of direct adaptive neural network (NN) tracking control for a class of uncertain nonlinear multi-input/multi-output (MIMO) systems by employing backstepping technique. Compared with the existing results, the outstanding features of the two proposed control schemes are presented as follows. Firstly, a semi-globally stable adaptive neural control scheme is developed to guarantee that the ultimate tracking errors satisfy the accuracy given a priori, which cannot be carried out by using all existing adaptive NN control schemes. Secondly, we propose a novel adaptive neural control approach such that the closed-loop system is globally stable, and in the meantime the ultimate tracking errors also achieve the tracking accuracy known a priori, which is different from all existing adaptive NN backstepping control methods where the closed-loop systems can just be ensured to be semi-globally stable and the ultimate tracking accuracy cannot be determined a priori by the designers before the controllers are implemented. Thirdly, the main technical novelty is to construct three new nth-order continuously differentiable switching functions such that multiswitching-based adaptive neural backstepping controllers are designed successfully. Fourthly, in contrast to the classic adaptive NN control schemes, this paper adopts Barbalat׳s lemma to analyze the convergence of tracking errors rather than Lyapunov stability theory. Consequently, the accuracy of ultimate tracking errors can be determined and adjusted accurately a priori according to the real-world requirements, and all signals in the closed-loop systems are also ensured to be uniformly ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness and merits of the two proposed adaptive NN control schemes.  相似文献   

11.
A new transitional filter based on the sum of filter polynomials is proposed and discussed. It shall be shown that the approach allows for greater flexibility in adjusting passband and stopband gain shapes. The sensitivity of the filter transfer function is analyzed and related to the approximation problem. Some new modified classical filters are also derived including maximally flat (Butterworth) and equiripple (Chebyshev) types. Several examples of combining Butterworth, Chebyshev and sync-tuned filters are presented and compared to those obtained using the conventional product method. The new transitional filter provides an alternative to other forms and provides a means for isolating the effects of non-uniformly distributed pole angles.  相似文献   

12.
In this article, an adaptive fuzzy control method is proposed for induction motors (IMs) drive systems with unknown backlash-like hysteresis. First, the stochastic nonlinear functions existed in the IMs drive systems are resolved by invoking fuzzy logic systems. Then, a finite-time command filter technique is exploited to overcome the obstacle of “explosion of complexity” emerged in the classical backstepping procedure during the controller design process. Meanwhile, the effect of the filter errors generated by command filters is decreased by utilizing corresponding error compensating mechanism. To cope with the influence of backlash-like hysteresis input, an auxiliary system is constructed, in which the output signal is applied to compensate the effect of the hysteresis. The finite-time control technology is adopted to accelerate the response speed of the system and reduce the tracking error, and the stochastic disturbance and backlash-like hysteresis are considered to improve control accuracy. It’s shown that the tracking error can converge to a small neighborhood around the origin in finite-time under the constructed controller. Finally, the availability of the presented approach is validated through simulation results.  相似文献   

13.
In this paper, the adaptive prescribed performance tracking control of nonlinear asymmetric input saturated systems in strict-feedback form is addressed under the consideration of model uncertainties and external disturbances. A radial basis function neural network (RBF-NN) is utilized to handle the model uncertainties. By prescribed performance functions, the transient performance of the system can be guaranteed. The continuous Gaussian error function is represented as an approximation of asymmetric saturation nonlinearity such that the backstepping technique can be leveraged in the control design. Based on the Lyapunov synthesis, residual function approximation inaccuracies and external disturbances are compensated by constructed adaptive control laws. As a consequence, all the signals in the closed-loop system are uniformly ultimately bounded and the tracking errors bounded by prescribed functions converge to a small neighbourhood of zero. The proposed method is applied to the autonomous underwater vehicles (AUVs) with extensive simulation results demonstrating the effectiveness of the proposed method.  相似文献   

14.
There is a strong analogy between mechanical structural elements and magnetic circuit components which can be extended to include hysteretic energy losses associated with yielding in mechanical systems and saturation in magnetic components. Procedures for developing finite state models of hysteretic components are presented using a small number of basic elements. Using bond graph techniques, it is shown that, when dual structural models are used, elements may be assembled in arbitrary numbers to achieve any desired accuracy without problems of derivative causality. The reason for the dual structure can be seen from physical reasoning. The shape of the hysteresis curve for magnetic materials generally requires more elements for a given degree of approximation than the shape of the typical mechanical hysteresis curve.  相似文献   

15.
In most communication networks, error probabilities 1?→?0 and 0?→?1 are equally likely to occur. However, in some optical networks, such as local and access networks, this is not the case. In these networks, the number of received photons never exceeds the number of transmitted ones. Hence, if the receiver operates correctly, only 1?→?0 errors can occur. Motivated by this fact, in this paper, we present a class of integer codes capable of correcting burst and random asymmetric (1?→?0) errors within a b-bit byte. Unlike classical codes, the proposed codes are defined over the ring of integers modulo 2b ?1. As a result, they have the potential to be implemented in software without any hardware assist.  相似文献   

16.
The construction of nomographs for transitional classical filters is described. Gain functions of classical filters are related to filter requirements resulting in a formulation for the general gain nomograph. The transitional filters that are products of approximating polynomials are incorporated into the general gain nomograph resulting in transitional filter nomographs that are sums of the individual nomographs. Nomographs for transitional filters using alternative forms where poles are interpolated are also considered. The resulting nomographs allow for quick optimization of transitional filter frequency response in many cases. Design examples are submitted and discussed. The proposed transitional filter nomographs provide the engineer with increased insight into the selection of classical transitional filters with optimum frequency response.  相似文献   

17.
Brain–computer interface (BCI) is a promising intelligent healthcare technology to improve human living quality across the lifespan, which enables assistance of movement and communication, rehabilitation of exercise and nerves, monitoring sleep quality, fatigue and emotion. Most BCI systems are based on motor imagery electroencephalogram (MI-EEG) due to its advantages of sensory organs affection, operation at free will and etc. However, MI-EEG classification, a core problem in BCI systems, suffers from two critical challenges: the EEG signal’s temporal non-stationarity and the nonuniform information distribution over different electrode channels. To address these two challenges, this paper proposes TCACNet, a temporal and channel attention convolutional network for MI-EEG classification. TCACNet leverages a novel attention mechanism module and a well-designed network architecture to process the EEG signals. The former enables the TCACNet to pay more attention to signals of task-related time slices and electrode channels, supporting the latter to make accurate classification decisions. We compare the proposed TCACNet with other state-of-the-art deep learning baselines on two open source EEG datasets. Experimental results show that TCACNet achieves 11.4% and 7.9% classification accuracy improvement on two datasets respectively. Additionally, TCACNet achieves the same accuracy as other baselines with about 50% less training data. In terms of classification accuracy and data efficiency, the superiority of the TCACNet over advanced baselines demonstrates its practical value for BCI systems.  相似文献   

18.
This paper deals with noise detection and threshold free on-line denoising procedure for discrete scanning probe microscopy (SPM) surface images using wavelets. In this sense, the proposed denoising procedure works without thresholds for the localisation of noise, as well for the stop criterium of the algorithm. In particular, a proposition which states a constructive structural property of the wavelets tree with respect to a defined seminorm has been proven for a special technical case. Using orthogonal wavelets, it is possible to obtain an efficient localisation of noise and as a consequence a denoising of the measured signal. An on-line denoising algorithm, which is based upon the discrete wavelet transform (DWT), is proposed to detect unavoidable measured noise in the acquired data. With the help of a seminorm the noise of a signal is defined as an incoherent part of a measured signal and it is possible to rearrange the wavelet basis which can illuminate the differences between its coherent and incoherent part. In effect, the procedure looks for the subspaces consisting of wavelet packets characterised either by small or opposing components in the wavelet domain. Taking real measurements the effectiveness of the proposed denoising algorithm is validated and compared with Gaussian FIR- and Median filter. The proposed method was built using the free wavelet toolboxes from the WaveLab 850 library of the Stanford University (USA).  相似文献   

19.
20.
In this paper, a novel adaptive control scheme is investigated based on the backstepping design for a class of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. The radial basis function neural networks are used to approximate the unknown nonlinear functions obtained by using Ito differential formula and Young?s inequality. The unknown time-varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing available dynamic signal. It is proved that all signals in the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded (SGUUB) in mean square or the sense of four-moment. Simulation results illustrate the effectiveness of the proposed design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号