首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this contribution, we develop continuous completely decentralized state-feedback adaptive controllers with sliding mode for a class of large-scale interconnected systems with nonlinear interconnections with unknown time-varying state delays. The novel contribution of this paper is that asymptotically exact tracking within the framework of completely decentralized direct continuous adaptive control is possible also for a class of nonlinear plants with matched interconnections and disturbances.  相似文献   

2.
This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.  相似文献   

3.
In this paper, a flatness-based adaptive sliding mode control strategy is presented to solve the trajectory tracking problem of a quadrotor. According to the differential flatness theory, the typical under-actuated quadrotor dynamics is transformed into a fully-actuated one. Based on this model, backstepping sliding mode controllers are designed to solve the trajectory tracking problem. To improve the robustness to disturbances, extended state observers are applied as a feedforward compensation of disturbances. Moreover, considering the high-order dynamics and possible instability caused by large observer gains, the adaptive method is applied to compensate for the estimation error. The effectiveness of the proposed control scheme is verified in simulations.  相似文献   

4.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

5.
In this paper, the problem of active fault tolerant control for a reusable launch vehicle (RLV) with actuator fault using both adaptive and sliding mode techniques is investigated. Firstly, the kinematic equations and dynamic equations of RLV are given, which represent the characteristics of RLV in reentry flight phase. For the dynamic model of RLV in faulty case, a fault detection scheme is proposed by designing a nonlinear fault detection observer. Then, an active fault tolerant tracking strategy for RLV attitude control systems is presented by making use of both adaptive control and sliding mode control techniques, which can guarantee the asymptotic output tracking of the closed-loop attitude control systems in spite of actuator fault. Finally, simulation results are given to demonstrate the effectiveness of the developed fault tolerant control scheme.  相似文献   

6.
Unmanned tractors are widely adopted in agricultural operations as autonomous driving technology progresses. The current path tracking control methods are limited by the unstructured farmland, the accuracy and anti-interference ability needed to be improved. This paper presents a novel adaptive second-order sliding mode (ASOSM) control method to tackle the aforementioned problems in practical implementation. First, we introduce a preview lateral offset model based on the preview kinematic and tractor dynamic model, which helps solve the under-actuated problem in path tracking. Then, the ASOSM controller is designed using the revamped adding a power integrator (API) and adaptive mechanism, which ensures that the sliding variable is converged to zero within the finite time. Meanwhile, the chattering problem in traditional sliding mode control is relieved. Finally, a high-fidelity and full-car model is established under Simulink/Carsim environment, and comparative simulations conrm the superiority of the designed control method.  相似文献   

7.
An adaptive sliding mode trajectory tracking controller is developed for fully-actuated robotic airships with parametric uncertainties and unknown wind disturbances. Based on the trajectory tracking model of robotic airships, an adaptive sliding mode control strategy is proposed to ensure the asymptotic convergence of trajectory tracking errors and adaptive estimations. The crucial thinking involves an adaptive scheme for the controller gains to avoid the off-line tuning. Specially, the uncertain physical parameters and unknown wind disturbances are rejected by variable structure control, and boundary layer technique is employed to avoid the undesired control chattering phenomenon. Computer experiments are performed to demonstrate the performance and advantage of the proposed control method.  相似文献   

8.
Using a nonlinear complete order model of a synchronous motor, a robust second order sliding mode observer based control scheme is proposed. For that, a generalized super-twisting 3rd order observer is proposed for nonlinear systems. Based on the proposed observer scheme, a robust rotor flux observer is designed, then, a stator current observer is proposed using a classical super-twisting algorithm for extracting information of the rotor speed by means of the equivalent control method. The control design for the output tracking of a desired reference signal for the rotor speed is carried out with a classical super-twisting sliding mode algorithm and adaptive backstepping techniques. Due to the number of inputs, the flux in the excitation winding, and the direct component of the stator currents are also regulated. Numeric simulations predict a good performance of the closed-loop synchronous motor with parameter variations.  相似文献   

9.
The attitude tracking control problem of a spacecraft nonlinear model with external disturbances and inertia uncertainties is addressed in this paper. First, a new sliding mode controller is designed to ensure the asymptotic convergence of the attitude and angular velocity tracking errors against external disturbances and inertia uncertainties by using a modified differentiator to estimate the total disturbances. Second, an adaptive algorithm is applied to compensating the disturbances, by which another sliding mode controller is successfully designed to achieve a high performance on the attitude tracking in the presence of the inertia uncertainties, external disturbances and actuator saturations. Finally, simulation results are presented to illustrate effectiveness of the control strategies.  相似文献   

10.
In this paper, the tracking control problem of uncertain Euler–Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.  相似文献   

11.
In this paper, an adaptive concave barrier function scheme coupled with the non-singular terminal sliding mode control technique is proposed for finite-time tracking control of the under-actuated nonlinear system in the existence of model uncertainty, external disturbance and input saturation. Firstly, the dynamical equation of under-actuated nonlinear n-order system is expressed under model uncertainty, external disturbance and input saturation. Secondly, for the improvement of stability performance of the system in the existence of input saturation, a compensation system is designed to overcome the constraint on the control input. Afterward, the tracking errors between actual states of the system and differentiable reference signals are defined and the sliding surface based on the defined tracking errors is presented. Then, for gaining the better transient and steady-state performance of the closed-loop system, the prescribed performance control scheme is adopted. Based on this method, the transformed prescribed form of the previous determined sliding surface is obtained to ensure that the sliding surface can reach to a predefined region. Afterward, for assurance of the finite-time reachability of transformed sliding surface, the nonsingular terminal sliding surface is recommended. In addition, for the compensation of the model uncertainty and external disturbance existed in the system, the adaptive-based concave barrier function technique is used to estimate the unknown bounds of uncertainty and exterior disturbance. Finally, for demonstration of the proposed control method, the simulations and experimental implementation are done on the air levitation system.  相似文献   

12.
In this study, an adaptive fractional order sliding mode controller with a neural estimator is proposed for a class of systems with nonlinear disturbances. Compared with traditional sliding mode controller, the new proposed fractional order sliding mode controller contains a fractional order term in the sliding surface. The fractional order sliding surface is used in adaptive laws which are derived in the framework of Lyapunov stability theory. The bound of the disturbances is estimated by a radial basis function neural network to relax the requirement of disturbance bound. To investigate the effectiveness of the proposed adaptive neural fractional order sliding mode controller, the methodology is applied to a Z-axis Micro-Electro-Mechanical System (MEMS) gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed control system can improve tracking performance as well as parameter identification performance.  相似文献   

13.
This paper investigates the frequency change problem of hydraulic turbine regulating system based on terminal sliding mode control method. By introducing a novel terminal sliding mode surface, a global fast terminal sliding mode controller is designed for the closed loop. This controller eliminates the slow convergence problem which arises in the terminal sliding mode control when the error signal is not near the equilibrium. Meanwhile, following consideration of the error caused by the actuator dead zone, an adaptive RBF estimator based on sliding mode surface is proposed. Through the dead zone error estimation for feed-forward compensation, the composite terminal sliding mode controller has been verified to possess an excellent performance without sacrificing disturbance rejection robustness and stability. Simulations have been carried out to validate the superiority of our proposed methods in comparison with other two other kinds of sliding mode control methods and the commonly used PID and FOPID controller. It is shown that the simulation results are in good agreement with the theoretical analysis.  相似文献   

14.
This study focuses on a sampled-data fuzzy decentralized tracking control problem for a quadrotor unmanned aerial vehicle (UAV) under the variable sampling rate condition. To this end, the overall dynamics of the quadrotor is expressed as a decentralized Takagi–Sugeno (T–S) fuzzy model interconnected with each other. Although the proposed decentralized control technique divides the overall UAV control system into attitude and position subsystems, the stability of the entire control system is guaranteed. Besides, in this paper, the model uncertainty, interconnection, and reference trajectory are considered as disturbances acting on the tracking error. To attenuate these disturbances, a novel sampled-data tracking control design technique is derived based on a linear reference model to be tracked and the time-dependent Lyapunov–Krasovskii functional (LKF). By doing so, both the stability of the tracking error dynamics and the minimization of tracking performance are guaranteed. Also, the proposed tracking control design method is derived as a linear matrix inequality (LMI)-based optimal problem. Finally, a simulation example is provided to demonstrate the effectiveness and feasibility of the proposed design methodology.  相似文献   

15.
This paper addresses the challenging problem of decentralized adaptive control for a class of coupled hidden leader-follower multi-agent systems, in which each agent is described by a nonlinearly parameterized uncertain model in discrete time and can interact with its neighbors via the history information from its neighbors. One of the agents is a leader, who knows the desired reference trajectory, while other agents cannot receive the desired reference signal or are unaware of existence of the leader. In order to tackle unknown internal parameters and unknown high-frequency gains, a projection-type parameter estimation algorithm is proposed. Based on the certainty equivalence principle and neighborhood history information, the decentralized adaptive control is designed, under which, the boundedness of identification error is guaranteed with the help of the Lyapunov theory. Under some conditions, it is shown that the multi-agent system eventually achieves synchronization in the presence of strong couplings. Finally, a simulation example is given to support the results of the proposed scheme.  相似文献   

16.
This paper focuses on the problem of chaos control for the permanent magnet synchronous motor with chaotic oscillation, unknown dynamics and time-varying delay by using adaptive sliding mode control based on dynamic surface control. To reveal the mechanism of motor system and facilitate controller design, the dynamic behavior of the system is investigated. Nonlinear items of system model, upper bounds of time delays and their derivatives are taken as unknown in the overall process. A RBF neural network with an adaptive law, which eliminates restrictions on accurate model and parameters, is employed to cope with unknown dynamics. In order to solve issues such as chaotic oscillation, ‘explosion of complexity’ of backstepping, and chattering associated with sliding mode control, a sliding mode controller is developed within the framework of dynamic surface control by the hybrid of adaptive technology and RBF neural network. In addition, an appropriate Lyapunov function is employed to demonstrate the system stability. Finally, the feasibility of the proposed scheme is testified by simulation.  相似文献   

17.
The attitude tracking control problem for a rigid spacecraft using two optimal sliding mode control laws is addressed. Integral sliding mode (ISM) control is applied to combine the first-order sliding mode with optimal control and is applied to quaternion-based spacecraft attitude tracking maneuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the control Lyapunov function (CLF) approach is used to solve the infinite-time nonlinear optimal control problem, whereas the Lyapunov optimizing control (LOC) method is applied to solve the finite-time nonlinear optimal control problem. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude tracking maneuvres is presented and simulation results are included to demonstrate and verify the usefulness of the proposed controllers.  相似文献   

18.
This paper is concerned with the security control problem for a class of Markov jump systems subject to false data injection attack and incomplete transition rates. An on-line estimation strategy is provided for the time-variant and unknown cyber-attack modes. And then, an adaptive sliding mode controller is synthesized with different robust terms for different modes to guarantee the reachability of the specified sliding surface. Moreover, the sufficient conditions for the stability of the closed-loop systems are derived. Finally, it is shown from simulation results that the effect of both false data injection attack and incomplete TRs can be effectively attenuated by the present adaptive SMC method.  相似文献   

19.
The current work proposes a decentralized adaptive dynamic surface control approach for extracting the maximum power from a photovoltaic (PV) system and then regulating the required voltage for charging the battery. In this regard, two cascaded direct current-direct current (DC-DC) converters are utilized. The boost converter is interposed between the PV system and the load to help extract the maximum power. The buck-boost converter is then exploited to maintain the output voltage at a specified level which must meet the battery demand. Therefore, to handle the interactions between the cascaded converters, a decentralized control approach is developed. In the suggested approach, by introducing a nonlinear filter, an effective dynamic surface control (DSC) scheme is proposed with guaranteeing asymptotic tracking convergence. Further, by incorporating a nonlinear compensation term into the proposed control approach, the robustness of the resulting controller is improved. In addition, since the model of the converters is nonlinear with unknown uncertainties, the neuro-fuzzy system is used to estimate lumped uncertainties. The proposed control method has good attributes in terms of having a low tracking error, an excellent transition response, and a quick response to changes in atmospheric conditions. The stability of the whole control system is proved by the Lyapunov stability theorem. Finally, comprehensive simulation results are performed to validate the effectiveness of the suggested control approach.  相似文献   

20.
四轮全向机器人是一个复杂的四维冗余系统,其轨迹跟踪控制性能极易受到模型不确定性及外界干扰的影响。针对这一问题,本文提出一种基于动力学模型的四轮全向机器人滑模轨迹跟踪控制方法。首先,通过输入变换将复杂的四维冗余机器人系统模型转化为三维模型,然后针对模型不确定性及外界扰动,采用滑模控制算法进行轨迹跟踪控制。仿真结果表明,该方法能够有效抑制外界干扰,同时降低模型不确定性的影响,机器人能够很好地跟踪期望轨迹,跟踪速度快,跟踪精度高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号