首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
What are the barriers to technology‐rich inquiry pedagogy in urban science classrooms, and what kinds of programs and support structures allow these barriers to be overcome? Research on the pedagogical practices within urban classrooms suggests that as a result of many constraints, many urban teachers' practices emphasize directive, controlling teaching, that is, the “pedagogy of poverty” (Haberman, 1991 ), rather than the facilitation of students' ownership and control over their learning, as advocated in inquiry science. On balance, research programs that advocate standards‐based or inquiry teaching pedagogies demonstrate strong learning outcomes by urban students. This study tracked classroom research on a technology‐rich inquiry weather program with six urban science teachers. The teachers implemented this program in coordination with a district‐wide middle school science reform. Results indicated that despite many challenges in the first year of implementation, students in all 19 classrooms of this program demonstrated significant content and inquiry gains. In addition, case study data comprised of twice‐weekly classroom observations and interviews with the six teachers suggest support structures that were both conducive and challenging to inquiry pedagogy. Our work has extended previous studies on urban science pedagogy and practices as it has begun to articulate what role the technological component plays either in contributing to the challenges we experienced or in helping urban science classrooms to realize inquiry science and other positive learning values. Although these data outline results after only the first year of systemic reform, we suggest that they begin to build evidence for the role of technology‐rich inquiry programs in combating the pedagogy of poverty in urban science classrooms. © 2002 John Wiley & Sons, Inc. J Res Sci Teach 39: 128‐150, 2002  相似文献   

2.
This article investigates three teachers' conceptions and use of inquiry‐based instructional strategies throughout a professional development program. The professional development program consisted of a 2‐week summer inquiry institute and research experience in university scientists' laboratories, as well as three academic year workshops. Insights gained from an in‐depth study of these three secondary teachers resulted in a model of teacher conceptions that can be used to direct future inquiry professional development. Teachers' conceptions of inquiry teaching were established through intensive case–study research that incorporated extensive classroom observations and interviews. Through their participation in the professional development experience, the teachers gained a deeper understanding of how to implement inquiry practices in their classrooms. The teachers gained confidence and practice with inquiry methods through developing and presenting their institute‐developed inquiry lessons, through observing other teachers' lessons, and participating as students in the workshop inquiry activities. Data analysis revealed that a set of four core conceptions guided the teachers' use of inquiry‐based practices in their classrooms. The teachers' conceptions of science, their students, effective teaching practices, and the purpose of education influenced the type and amount of inquiry instruction performed in the high school classrooms. The research findings suggest that to be successful inquiry professional development must not only teach inquiry knowledge, but it must also assess and address teachers' core teaching conceptions. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1318–1347, 2007  相似文献   

3.
4.
This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2‐year Master of Teaching program. A specific program goal was to prepare teachers to use technology to support reform‐based science instruction. To this end, the program integrated technology instruction across five courses and situated this instruction within the context of learning and teaching science. A variety of data sources were used to characterize the participants' intentions and instructional practices, including classroom observations, lesson plans, interviews, and written reflections. Data analysis followed a constant comparative process with the goal of describing if, how, and why the participants integrated technology into their instruction and the extent to which they applied, adapted, and innovated upon what they learned in the science teacher preparation program. Results indicate that all participants used technology throughout their student teaching for reform‐based science instruction. Additionally, they used digital images, videos, animations, and simulations to teach process skills, support inquiry instruction, and to enhance student engagement in ways that represented application, adaptation, and innovation upon what they learned in the science teaching methods program. Participants cited several features of the science teacher preparation program that helped them to effectively integrate technology into their instruction. These included participating in science lessons in which technology was modeled in the context of specific instructional approaches, collaborating with peers, and opportunities for feedback and reflection after teaching lessons. The findings of this study suggest that situated learning theory may provide an effective structure for preparing preservice teachers to integrate technology in ways that support reform‐based instruction. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 50:348–379, 2013  相似文献   

5.
6.
The use of kits in elementary science classes is a growing trend in some countries. Kits provide materials and inquiry lessons in a ready-to-teach format for teachers to use in their science instruction. This study examined elementary teachers' instructional strategies, classroom practices, and assessment types in relation to the frequency of science kit use. A total of 503 elementary teachers from an urban school district received professional development, implemented kits in their classrooms for a year, and then completed a survey about science kit use and teaching practices. Despite similarities in demographic characteristics (gender, ethnicity, certification/educational level), there were significant differences in teachers' use of inquiry-based teaching and assessment practices by kit use. Teachers who reported using kits the most often were significantly more likely to report that their students designed and implemented laboratory investigations as well recorded, represented, and analyzed data. In addition, the high kit users indicated that they were more likely to use student groups, require students to use evidence to support claims, and use alternative assessments of student work including portfolios, notebooks, and long-term projects than those teachers who used kits less frequently. Those teachers who reported using kits the least often were significantly more likely to report having students practice for standardized tests. The role of kits in promoting reform-based teaching practices is discussed.  相似文献   

7.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

8.
Recruiting and preparing STEM majors for teaching has become one of the major efforts at improving mathematics and science teacher quality at secondary level. One question is whether STEM majors who have not had the chance to experience active learning in mathematics and science classes as secondary students themselves know what inquiry pedagogy is. Secondly, it is unclear whether those who experienced inquiry in their college introductory discipline courses will be able to utilize the pedagogy in teaching secondary content. We address these questions through studying an undergraduate research methods course designed to improve STEM majors’ capacity for delivering inquiry-based mathematics and science lesson. Analysis of data from pre-and-post course surveys and students’ written research reports including students’ reflection on their inquiry projects suggests that offering future STEM teachers opportunities to conduct inquiry and reflect explicitly on how inquiry can be used to teach secondary content is important and beneficial.  相似文献   

9.
10.
Teaching students how to conduct authentic scientific inquiry is an essential aspect of recent science education reform efforts. Our National Science Foundation-funded GK-12 program paired science graduate students—fellows—with secondary science teachers in order to enhance inquiry-based instruction. This research examined the roles of the fellows, teachers, and school culture in the implementation of inquiry and the fellows’ conceptions of classroom inquiry versus that in their own research. Qualitative data were collected for two academic years. Overall, the classrooms shifted toward a more inquiry-oriented approach over the academic year. Several aspects of school culture influenced inquiry implementation. Fellows described their research as similar in overall structure but less constrained by known concepts, less guided by mentors, and more in-depth than that of secondary school students. The teacher-fellow scientist partnership is a potentially effective professional development model to create positive and lasting change within the science classroom.  相似文献   

11.
Summary Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.  相似文献   

12.
In this study, we investigated the impact of teaming school-based instructional coaches with science or mathematics middle school teachers to build a community of practice around inquiry instruction. This professional development model began with a 2-week summer institute and continued with four follow-up sessions during the academic school year for the teacher and instructional coach participants. The teachers’ participation in this professional development program with (1) content instruction through inquiry lessons, (2) practice teaching to middle school students, and (3) coach-led reflection improved their understanding of inquiry-based practices and the quality of their classroom inquiry implementation. Professional development experiences that prepare teachers and coaches simultaneously in inquiry and content may help build a shared language for reform and accelerate inquiry instructional changes.  相似文献   

13.
This study assessed the effectiveness of one science teacher education program designed to be a model program. The study provided evidence that preservice science teacher education can have a very positive effect on the development of preservice science teachers into effective practicing teachers. Thirty program graduates completed a pilot version of the 1985 National Survey of Science and Mathematics Education providing information on course objectives, teaching strategies, equipment use, time allocation, and textbook use. The responses of program graduates were compared to the responses of a select national sample of teachers. All teachers in the comparison group were from programs in the Search for Excellence in Science Education, Presidential Award winners, recognized as outstanding state science teachers, employed as department chairs, or actively involved in the development of science curriculum. Analysis of the responses indicated that both program graduates and comparison group teachers had similar course objectives and teaching strategies, used materials and equipment a similar amount of time, and allocated class time in similar ways. In another component of the study, students of 37 program graduates completed a questionnaire that assessed their attitudes toward science teachers, science classes, and the study of science. Analysis of attitudinal data from their 2871 students indicated that students of program graduates generally had positive attitudes. For instance, 89% of the students perceived their science teacher as asking questions and 80% perceived their science teacher as letting them ask questions. In general, the data are in stark contrast to the images obtained from National Assessment efforts.  相似文献   

14.
We present an inquiry‐based, aquatic science professional development (PD) for upper‐elementary, middle, and high school teachers and examine changes in student outcomes in light of participating teachers’ characteristics and the grade band of the students. Our study lends support to the assertion that inquiry‐ and content‐focused PD, paired with classroom implementation, can effectively improve student learning. Our findings indicate that students improved in their nature of science (NOS) and aquatic science content knowledge and that these changes depended in some ways on the participating teachers’ characteristics and adherence to the program. The students’ improvements were amplified when their teachers adhered more closely to the PD activities during their classroom implementation. The teachers’ previous science PD experience and pre‐PD understanding of inquiry‐based teaching also explained some of the variability in student growth. In both NOS and content, students of teachers with less prior science‐PD experience benefited more. Grade band also explained variation in student outcomes through interactions with teacher‐characteristic variables. In high school, students of teachers with lower pre‐PD inquiry knowledge appeared to learn more about NOS. Our results suggest that inquiry and content training through PD may minimize disparities in teaching due to inexperience and lack of expertise. Our study also demonstrates the value of PD that teaches a flexible approach to inquiry and focuses on underrepresented, interdisciplinary content areas, like aquatic science. © 2017 Wiley Periodicals, Inc. J Res Sci Teach 54:1219–1245, 2017  相似文献   

15.
Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.  相似文献   

16.
This paper describes Ecuadorian in-service teachers and their science teaching practices in public primary schools. We wanted to find out to what extent teachers implement inquiry activities in science teaching, the level of support they provide, and what type of inquiry they implement. Four questionnaires applied to 173 teachers resulted in the identification of high context beliefs and moderately high self-efficacy beliefs. Teachers declared to implement activities mostly to develop understanding of the material, as contrast to actual manipulation of data and/or coming to conclusions. They adopt rather a strictly guided approach in contrast to giving autonomy to learners to work on their own. Finally, teachers keep control with regard to question formulation and choice in solution procedures, which constrains the development of real inquiry. When comparing teacher beliefs, we found that teachers' context beliefs make a difference in the level of support that teachers provide to their students. Teachers with lower context beliefs ask students to perform inquiry activities on their own to a lesser extent when compared with teachers with higher context beliefs. This implies that further research on the implementation of inquiry in science teaching should take into account teachers' differences in their context beliefs. We also found out that the use of high or low support in inquiry activities remained the same for teachers with either higher or lower self-efficacy beliefs.  相似文献   

17.
In this investigation we employed a case study approach with qualitative and quantitative data sources to examine and discover the characteristics of the processes used by a midwestern U.S. school system to adopt and implement a new K–6 science curriculum. Analysis of data yielded several results. Elementary teachers received what they requested, a hands‐on science program with texts and kits. Teachers as a group remained in the early stages of the Concerns‐Based Adoption Model profile of concerns. Many K–6 teachers remained uncomfortable with teaching science. Teachers' attitudes regarding the new program were positive, and they taught more science. Teachers struggled with science‐as‐inquiry, with a science program they believe contained too many concepts and too much vocabulary, and with their beliefs that students learned more and loved the new hands‐on program. Traditional science teaching remained the norm. Administrative support was positive but insufficient to facilitate full implementation of the new program and more substantial change in teaching. Standardized science achievement test scores did not show an observable pattern of growth. It is concluded that a systematic, ongoing program of professional development is necessary to address teachers' concerns and help the district realize its goal of standards‐based K–6 science instruction. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 42: 25–52, 2005  相似文献   

18.
This study investigated the impact of the use of computer technology on the enactment of “inquiry” in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology‐enthusiast instructor. Data were collected over the course of 4 months during which several “inquiry” activities were completed, some of which were supported with the use of technology. Non‐participant observation, classroom videotaping, and semi‐structured and critical‐incident interviews were used to collect data. The results indicated that the technology in use worked to restrict rather than promote “inquiry” in the participant classroom. In the presence of computers, group activities became more structured with a focus on sharing tasks and accounting for individual responsibility, and less time was dedicated to group discourse with a marked decrease in critical, meaning‐making discourse. The views and beliefs of teachers and students in relation to their specific contexts moderate the potential of technology in supporting inquiry teaching and learning and should be factored both in teacher training and attempts to integrate technology in science teaching. © 2006 Wiley Periodicals, Inc. J Res Sci Teach  相似文献   

19.
The use of inquiry‐based laboratory in college science classes is on the rise. This study investigated how five nonmajor biology students learned from an inquiry‐based laboratory experience. Using interpretive data analysis, the five students' conceptual ecologies, learning beliefs, and science epistemologies were explored. Findings indicated that students with constructivist learning beliefs tended to add more meaningful conceptual understandings during inquiry labs than students with positivist learning beliefs. All students improved their understanding of experiment in biology. Implications for the teaching of biology labs are discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 986–1024, 2003  相似文献   

20.
Teachers play a central role in inquiry science classrooms. In this study, we investigate how seven teacher variables (i.e., gender, experience, perceived importance of inquiry and traditional teaching, workshop attendance, partner teacher, use of technology) affect student knowledge integration understanding of science topics drawing on previous research. Using a two‐level hierarchical linear model, we analyze year‐end knowledge integration performance of 4,513 students taught by 40 teachers across five states. Results indicate that students of teachers who value inquiry teaching strategies have significantly higher levels of knowledge integration understanding than those of teachers who believe in traditional teaching methods. In addition, workshop attendance and having a partner teacher teaching the same unit in the same school also have a positive impact on students' knowledge integration levels. The results underscore the importance of professional development and collegial support in enhancing student success in inquiry science. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:807–819, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号