首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Veterinary students at the Royal Veterinary College, University of London learn about bovine abdominal anatomy using a virtual reality simulator, the Haptic Cow. A haptic device is positioned inside a fiberglass model of the rear‐half of a cow, allowing students to palpate virtual abdominal structures via a robotic arm. The Haptic Cow helps to address some of the practical and ethical issues around sourcing and using cadavers and live animals in teaching. Kinnison and her co‐authors discuss use of this simulator in anatomy classes in the current issue of ASE.  相似文献   

2.
兽医病理解剖学是一门实践性很强的学科。学生通过对兽医病理解剖学的学习,不仅能够掌握理论知识,还可以了解兽医临床疾病,培养独立思考以及分析问题、解决问题的能力。进行临床病例讨论,可以提高学生对各类疾病发病原因、发病过程的了解程度,从而加强学生对理论知识的掌握程度以及对各类疾病的分析和理解能力。文章主要研究了临床病例讨论在兽医病理解剖学教学中的应用。  相似文献   

3.
Anatomical education in the United Kingdom (UK) and Ireland has long been under scrutiny, especially since the reforms triggered in 1993 by the General Medical Council's “Tomorrow's Doctors.” The aim of the current study was to investigate the state of medical student anatomy education in the UK and Ireland in 2019. In all, 39 medical schools completed the survey (100% response rate) and trained 10,093 medical students per year cohort. The teachers comprised 760 individuals, of these 143 were employed on full-time teaching contracts and 103 were employed on education and research contracts. Since a previous survey in 1999, the number of part-time staff has increased by 300%, including a significant increase in the number of anatomy demonstrators. In 2019, anatomy was predominantly taught to medical students in either a system-based or hybrid curriculum. In all, 34 medical schools (87%) used human cadavers to teach anatomy, with a total of 1,363 donors being used per annum. Gross anatomy teaching was integrated with medical imaging in 95% of medical schools, embryology in 81%, living anatomy in 78%, neuroanatomy in 73%, and histology in 68.3%. Throughout their five years of study, medical students are allocated on average 85 h of taught time for gross anatomy, 24 h for neuroanatomy, 24 h for histology, 11 h for living anatomy, and 10 for embryology. In the past 20 years, there has been an average loss of 39 h dedicated to gross anatomy teaching and a reduction in time dedicated to all other anatomy sub-disciplines.  相似文献   

4.
Recognition of anatomical landmarks in live animals (and humans) is key for clinical practice, but students often find it difficult to translate knowledge from dissection‐based anatomy onto the live animal and struggle to acquire this vital skill. The purpose of this study was to create and evaluate the use of an equine anatomy rug (“Anato‐Rug”) depicting topographical anatomy and key areas of lung, heart, and gastrointestinal auscultation, which could be used together with a live horse to aid learning of “live animal” anatomy. Over the course of 2 weeks, 38 third year veterinary students were randomly allocated into an experimental group, revising topographical anatomy from the “Anato‐Rug,” or a control group, learning topographical anatomy from a textbook. Immediately post activity, both groups underwent a test on live anatomy knowledge and were retested 1 week later. Both groups then completed a questionnaire to ascertain their perceptions of their learning experiences. Results showed that the experimental groups scored significantly higher than the control group at the first testing session, experienced more enjoyment during the activity and gained more confidence in identifying anatomical landmarks than the control group. There was not a significant difference in scores between groups at the second testing session. The findings indicate that the anatomy rug is an effective learning tool that aids understanding, confidence, and enjoyment in learning equine thorax and abdominal anatomy; however it was not better than traditional methods with regards to longer term memory recall. Anat SciEduc. © 2012 American Association of Anatomists.  相似文献   

5.
Three‐dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer‐based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. Anat Sci Educ 6: 216–224. © 2013 American Association of Anatomists.  相似文献   

6.
Development of new methods for anatomy teaching is increasingly important as we look to modernize and supplement traditional teaching methods. In this study, a life-sized equine model, “Geoff,” was painted with surface and deep anatomical structures with the aim of improving students’ ability to convert theoretical knowledge into improved topographical anatomy knowledge on the live horse. Third and fourth year veterinary medicine students (n = 45) were randomly allocated into experimental (used “Geoff”) and control (used textbook) groups. The efficacy of the model was evaluated through a structured oral exam using a live horse. Questionnaires gathered information on student confidence and enjoyment of the task. There was no significant difference in the performance of experimental and control groups either immediately (44±20% vs. 40±21%; P = 0.504) or 9 weeks after the learning intervention (55±17% vs. 55±20%; P = 0.980). There were however specific questions on which the experimental group performed better than controls, and for which gender effects were apparent. The students using “Geoff” showed a transient gain in confidence following the session (Likert scale 2.7 to 3.6) however the initial increase was no longer present at the second test. There was a significant influence of gender on confidence with greater confidence gains in females in the Experimental group. The students found the model to be extremely useful and both groups found the sessions enjoyable. The model will be of benefit as a complementary learning tool for students.  相似文献   

7.
Anatomy is one of the cornerstones of medical education. Unfortunately, sufficient evidence has accumulated to suggest a worldwide decline in the resources and time allocated to its teaching. Integration of anatomy with clinical medicine has been frequently advocated as the solution to this academic crisis. Consequently, new ways of harnessing clinical relevance to the teaching of anatomy must be sought to make it applicable to contemporary clinical practice. Human cadavers have been used to teach laparoscopic skills to surgical trainees for some time. More recently, centers in the United States have piloted the use of minimally invasive techniques in the teaching of anatomy to undergraduates. We believe that the use of laparoscopy on human cadavers may also be used to complement the teaching of anatomy to United Kingdom and European medical students. This would not only familiarize students with the topography and morphology of human anatomy, but also with the concept of manipulating anatomical structures to achieve a clinical outcome. Other benefits include improved three‐dimensional orientation, increased dexterity, and development team‐working skills amongst students. A UK feasibility study is currently underway. Anat Sci Ed 1:46–47, 2008. © 2007 American Association of Anatomists.  相似文献   

8.
The debate surrounding the use of cadavers in teaching anatomy has focused almost exclusively on the pedagogic role of cadaver dissection in medical education. The aim of this study was to explore the wider aspects of a body bequest program for teaching and research into gross anatomy in a University setting. A retrospective audit was undertaken on body donation and the use of cadaver specimens for teaching and research at our institution between 1876 and 2009. The body bequest program, first established in 1943, now receives more than 40 donations per year. In addition to the medical course, nine other University degrees and courses currently use cadaver specimens for gross anatomy; four of these are research degrees and the remainder undergraduate degrees and courses. The use of cadaver specimens by non‐University groups has also increased, particularly during the past decade, such that there are now 16 different groups using cadaver specimens for instructional courses; most of these are professional medical courses. The use of cadavers for both research and teaching may encourage a more evidence‐based approach to clinical anatomy. This unique audit, spanning more than a century of anatomy education within a single University Medical School, highlights the utility of a robust body bequest program and the wide range of students and health professionals who interact with this precious resource. Anat Sci Educ 2:234–237, 2009 © 2009 American Association of Anatomists.  相似文献   

9.
Areas of difficulty faced by our veterinary medicine students, with respect to their learning in dissection classes, were identified. These challenges were both general adult‐learning related and specific to the discipline of anatomy. Our aim was to design, implement, and evaluate a modified reciprocal peer‐assisted/team‐based learning format—Doing Dissections Differently (DDD)—to complement existing dissection classes, with the intention of enhancing both student learning and the student learning experience. Second year veterinary medicine students (n = 193), in their usual dissection groups, were randomly assigned to one of four roles: anatomist, clinician, radiologist, and learning resources manager. Students attended a preparatory workshop outlining the skills required for effective execution of their role. They were then asked to perform their roles throughout five consecutive musculoskeletal dissection classes. Student attitudes to dissection classes before and after DDD were evaluated by questionnaire (146 respondents). There was a significant (P = 0.0001) improvement after DDD in a number of areas: increased perceived value of dissection classes as an anatomy learning aid; improved appreciation of the clinical relevance of anatomy; increased use of resources before and during dissection classes; and longer preparation time for dissection classes. Before DDD, 45% of students felt that at least one peer did not contribute usefully to the group during dissection classes; no improvement was seen in this measure after DDD. Although the new format highlighted a potential need to improve teamwork, most students actively engaged with DDD, with dissection classes valued more highly and utilized more effectively. © 2012 American Association of Anatomists.  相似文献   

10.
The aims of this review were to examine the place of surface anatomy in the medical literature, particularly the methods and approaches used in teaching surface and living anatomy and assess commonly used anatomy textbooks in regard to their surface anatomy contents. PubMed and MEDLINE databases were searched using the following keywords “surface anatomy,” “living anatomy,” “teaching surface anatomy,” “bony landmarks,” “peer examination” and “dermatomes”. The percentage of pages covering surface anatomy in each textbook was calculated as well as the number of images covering surface anatomy. Clarity, quality and adequacy of surface anatomy contents was also examined. The search identified 22 research papers addressing methods used in teaching surface anatomy, 31 papers that can help in the improvement of surface anatomy curriculum, and 12 anatomy textbooks . These teaching methods included: body painting, peer volunteer surface anatomy, use of a living anatomy model, real time ultrasound, virtual (visible) human dissector (VHD), full body digital x‐ray of cadavers (Lodox® Statscan® images) combined with palpating landmarks on peers and the cadaver, as well as the use of collaborative, contextual and self‐directed learning. Nineteen of these studies were published in the period from 2006 to 2013. The 31 papers covered evidence‐based and clinically‐applied surface anatomy. The percentage of surface anatomy in textbooks' contents ranged from 0 to 6.2 with an average of 3.4%. The number of medical illustrations on surface anatomy varied from 0 to 135. In conclusion, although there has been a progressive increase in publications addressing methods used in teaching surface anatomy over the last six to seven years, most anatomy textbooks do not provide students with adequate information about surface anatomy. Only three textbooks provided a solid explanation and foundation of understanding surface anatomy. Anat Sci Educ 6: 415–432. © 2013 American Association of Anatomists.  相似文献   

11.
Human anatomy in physical therapy programs is a basic science course serving as a foundation for subsequent clinical courses. Integration of anatomy with a clinical emphasis throughout a curriculum provides opportunities for reinforcement of previously learned material. Considering the human cadaver laboratory as a fixed cost to our program, we sought opportunities to add value to the resource via vertical integration into a clinical skills course taught later in the curriculum. We designed an opportunity for second-year physical therapy students to revisit the human anatomy laboratory to study select clinical musculoskeletal tests and the associated anatomy in a clinically relevant context. Students performed select orthopedic ligament test on human cadavers, then incised specific structures and repeated the tests. Students were able to feel and visualize the function of pertinent anatomy associated with the clinical tests. Ninety-five percent of respondents reported that the ligament stress testing experience enhanced their understanding of orthopedic clinical tests with 91% reporting an enhanced understanding of anatomy related to specific clinical tests. Likewise, the experience was perceived as enjoyable and valuable with 86% of respondents reporting the experience as enjoyable and 100% responding the experience should continue as part of the curriculum.  相似文献   

12.
Medical education in mainland China has undergone massive expansion and reforms in the past decades. A nation-wide survey of the five-year clinical medicine programs aimed to examine the course hours, pedagogies, learning resources and teaching staff of anatomy both at present and over the past three decades (1990–1999, 2000–2009, and 2010–2018). The directors or senior teachers from 90 out of the 130 five-year clinical medicine programs were invited to fill out a factual questionnaire by email. Ultimately, sixty-five completed questionnaires were received from 65 different schools. It was found that the total number of gross anatomy course hours has decreased by 11% in the past 30 years and that systematic and regional anatomy have been increasingly taught separately among the surveyed medical schools. Problem-based learning has been adopted in thirty-five (54%) of the surveyed schools, and team-based learning is used in ten (15%) of the surveyed schools. The surveyed schools reported receiving more donated cadavers in recent years, with the average number increasing from 20.67 ± 20.29 in 2000–2009 to 36.10 ± 47.26 in 2010–2018. However, this has not resulted in a decrease in the number of students who needed to share one cadaver (11.85 ± 5.03 in 1990–1999 to 14.22 ± 5.0 in 2010–2018). A decreasing trend regarding the teacher-student ratio (1:25.5 in 2000–2009 to 1:33.2 in 2010–2018) was also reported. The survey demonstrated the historical changes in gross anatomy education in China over the past thirty years.  相似文献   

13.
Cultural influences on anatomy teaching and learning have been investigated by application of a questionnaire to medical students in British and Chinese Medical Schools. Results from the responses from students of the two countries were analyzed. Both groups found it easier to understand anatomy in a clinical context, and in both countries, student learning was driven by assessment. Curriculum design differences may have contributed to the British view wherein students were less likely to feel time pressure and enjoyed studying anatomy more than their Chinese counterparts. Different teaching approaches resulted in British students being more likely to recite definitions to learn, and the Chinese students found learning from cross‐sectional images easy. Cultural differences may account for the observation that British students were more inclined to ask questions in class, and the preference of Chinese students to study in small groups. The findings give evidence to show how ‘cultures of learning’ influence students' approaches and indicate the importance of cultural influences as factors amongst international and home learner groups. Anat Sci Ed 2:49–60, 2009. © 2009 American Association of Anatomists.  相似文献   

14.
The interpretation of computed tomographs (CTs) and magnetic resonance images (MRIs) to diagnose clinical conditions requires basic knowledge of sectional anatomy. Sectional anatomy has traditionally been taught using sectioned cadavers, atlases, and/or computer software. The computer software commonly used for this subject is practical and efficient for students but could be more advanced. The objective of this research was to present browsing software developed from the Visible Korean images that can be used for teaching sectional anatomy. One thousand seven hundred and two sets of MRIs, CTs, and sectioned images (intervals, one millimeter) of a whole male cadaver were prepared. Over 900 structures in the sectioned images were outlined and then filled with different colors to elaborate each structure. Software was developed where four corresponding images could be displayed simultaneously; in addition, the structures in the image data could be readily recognized with the aid of the color-filled outlines. The software, distributed free of charge, could be a valuable tool to teach medical students. For example, sectional anatomy could be taught by showing the sectioned images with real color and high resolution. Students could then review the lecture by using the sectioned and color-filled images on their own computers. Students could also be evaluated using the same software. Furthermore, other investigators would be able to replace the images for more comprehensive sectional anatomy.  相似文献   

15.
Thiel‐embalmed cadavers, which have been adopted for use in anatomy teaching in relatively few universities, show greater flexibility and color retention compared to formalin‐embalmed cadavers, properties which might be considered advantageous for anatomy teaching. This study aimed to investigate student attitudes toward the dissection experience with Thiel‐ compared to formalin/ethanol‐embalmed cadavers. It also aimed to determine if one embalming method is more advantageous in terms of learning functional anatomy through the comparison of student anterior forearm functional anatomy knowledge. Student opinions and functional anatomy knowledge were obtained through use of a questionnaire from students at two medical schools, one using Thiel‐, and one using more traditional formalin/ethanol‐embalmed cadavers. Both the Thiel group and the formalin group of students were surveyed shortly after completing an anterior forearm dissection session. Significant differences (P‐values <0.01) in some attitudes were found toward the dissection experience between cohorts using Thiel‐ vs. formalin‐embalmed cadavers. The Thiel group of students felt more confident about recognizing anatomy in the living individual, found it easier to identify and dissect anatomical structures, and indicated more active exploration of functional anatomy due to the retained flexibility of the cadaver. However, on testing, no significant difference in functional anatomy knowledge was found between the two cohorts. Overall, although Thiel embalming may provide an advantageous learning experience in some investigated areas, more research needs to be carried out, especially to establish whether student perception is based on reality, at least in terms of structure identification. Anat Sci Educ 11: 166–174. © 2017 American Association of Anatomists.  相似文献   

16.
Much research has shown the benefits of additional anatomical learning and dissection beyond the first year of medical school human gross anatomy, all the way through postgraduate medical training. We have developed an interactive method for teaching eye and orbit anatomy to medical students in their ophthalmology rotation at Duke University School of Medicine. We provide review lectures on the detailed anatomy of the adult human eye and orbit as well as the developmental anatomy of the eye. These lectures are followed by a demonstration of the anatomy of the orbit using conventional frontal and superior exposures on a prosected human cadaver. The anatomy is projected onto a large LCD screen using a mounted overhead camera. Following a brief lecture on clinically relevant anatomy, each student then dissects a fresh porcine (pig) eye under low magnification using a dissecting microscope. These dissections serve to identify structures extrinsic to the eyeball, including extraocular muscle attachments, small vessels, optic nerve stalk, and fascial sheath of the eyeball (Tenon's fascia). Dissection then shifts to the internal anatomy of the eyeball. The size and anatomy of the porcine eye is comparable with that of the human and the dissection provides students with a valuable hands‐on learning opportunity that is otherwise not available in embalmed human cadavers. Students and clinical faculty feedback reveal high levels of satisfaction with the presentation of anatomy and its scheduling early during the ophthalmology clerkship. Anat Sci Educ 2:173–178, 2009. © 2009 American Association of Anatomists.  相似文献   

17.
Utilizing reality anatomy such as dissection and demonstrating using cadavers has been described as a superior way to create meaning. The chemicals used to embalm cadavers differentially alter the tissue of the human body, which has led to the usage of different processes along the hard to soft‐fixed spectrum of preserved cadavers. A questionnaire based approach was used to gain a better insight into the opinion of anatomists on the use of preserved cadavers for the teaching of human anatomy. This study focused on anatomy teachers in the United Kingdom and Ireland. From the 125 participating anatomists, 34.4% were medically qualified, 30.4% had a PhD in a non‐anatomical science and 22.4% had a PhD in an anatomical science, these figures include ten anatomists who had combinations of MD with the two other PhD qualifications. The main findings from the questionnaire were that 61.6% of participants agreed that hard‐fixed formalin cadavers accurately resemble features of a human body whereas 21.6% disagreed. Moreover, anatomists rated the teaching aids on how accurately they resemble features of the human body as follows: plastic models the least accurate followed by plastinated specimens, hard fixed cadavers; soft preserved cadavers were considered to be the most accurate when it comes to resembling features of the human body. Though anatomists considered soft preserved cadavers as the most accurate tool, further research is required in order to investigate which techniques or methods provide better teaching tool for a range of anatomical teaching levels and for surgical training. Anat Sci Educ 10: 137–143. © 2016 American Association of Anatomists.  相似文献   

18.
In contrast to medical education, information on the use of arts as a learning approach is scarce in veterinary anatomy. The aim of this prospective, questionnaire-based study was to survey students' use of drawing in various aspects of veterinary anatomy learning (self-study, examinations, preparation for, and reflection on cadaver dissection). The quantitative data showed that first-year students with artistic preferences used drawing significantly more often in most aspects of anatomy learning than students with no such preferences, apart from the reported use of drawing in examinations and for reflection after cadaver dissection. The lack of significant correlations of the reported use of drawing in examinations with any other study variable provided support for the author's observation that student-generated drawings are not as commonly used in examinations as previously. In contrast to the study hypothesis, previous university studies did not correlate significantly with any aspect of the use of drawing in anatomy learning. None of the reported uses of drawing addressed the benefits of drawing in learning the comparative anatomy of animal species, a characteristic distinguishing veterinary anatomy from human anatomy. Qualitative student feedback indicated that encouragement and teacher-produced images would increase the use of drawing as a learning approach even if the implementation of drawing into the curriculum is not feasible. Conclusions from this study were implemented through self-directed learning in anatomy courses that replaced the canceled cadaveric dissections during the COVID-19 outbreak and also through the ongoing drawing workshops to further advance the use of drawing in veterinary anatomy learning.  相似文献   

19.
The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy was produced using the open source 3D imaging program "Blender." The aim was to evaluate the use of 3D virtual reality when compared with traditional anatomy teaching methods. Three groups were identified from the University of Manchester second year Human Anatomy Research Skills Module class: a "control" group (no prior knowledge of forearm anatomy), a "traditional methods" group (taught using dissection and textbooks), and a "model" group (taught solely using e-resource). The groups were assessed on anatomy of the forearm by a ten question practical examination. ANOVA analysis showed the model group mean test score to be significantly higher than the control group (mean 7.25 vs. 1.46, P < 0.001) and not significantly different to the traditional methods group (mean 6.87, P > 0.5). Feedback from all users of the e-resource was positive. Virtual reality anatomy learning can be used to compliment traditional teaching methods effectively.  相似文献   

20.
Anatomy education in Pakistan is facing many of the same challenges as in other parts of the world. Roughly, a decade ago, all medical and dental colleges in Pakistan emphasized anatomy as a core basic discipline within a traditional medical science curriculum. Now institutions are adopting problem based learning (PBL) teaching philosophies, and since medical colleges in Pakistan first introduced PBL curricula that expose the basic sciences primarily in clinical contexts, the methods and extent of anatomy teaching have been topics of much debate. Many claim that PBL curricula dilute basic science education, especially anatomy. At the same time, classically trained faculty members with PhD in anatomy have become nearly extinct in Pakistan, with only four working in country. A third challenge currently facing anatomy education in Pakistan, as in many parts of the world, is an unavailability of cadavers for dissection. As more institutions adopt PBL curricula, as PhD anatomists are harder to find, and as cadavers for dissection become scarce, Pakistan and other countries around the world will have to seriously consider how they will sustain adequate anatomy education. Anat Sci Educ 2:193–194, 2009. © 2009 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号