首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin D deficiency is highly prevalent in Indian children of northern, western and southern states. Serum 25 hydroxy cholecalferol (ng/ml) was analyzed in 310 children and adolescents of pediatric hospital of Kolkata, India. Serum calcium (mg/dl), phosphorous (mg/dl) and alkaline phosphatase (IU/L) data was obtained. Median 25(OH)D was 19 ng/ml. 19.2 % of population had serum 25(OH)D < 10 ng/ml (severe deficiency), 52.9 % had <20 ng/ml (deficiency), 24.5 % had 20–29 ng/ml (insufficiency) and 22.6 % had >30 ng/ml (optimum). Deficiency was highest in adolescents (86.1 %), followed by school children (61.0 %), lowest in pre-school children (41.6 %). 25(OH)D concentrations was lowest in winters (P = 0.002) and spring (P = 0.03) compared to summer. There was no correlation with calcium (P = 0.99), phosphorous (P = 0.23) and ALP (P = 0.63). There is high prevalence of vitamin D deficiency in children and adolescents of eastern India. Prevalence was lower in younger subjects. 25(OH)D did not correlate with bone mineral markers.  相似文献   

2.
To elucidate a higher rate of premature cardiovascular disease (CVD) in Asian Indian descendants (Roma) in Slovakia, we investigated frequency distribution, correlates and relationship of lipoprotein(a) [Lp(a)] to family CVD risk factors in Roma children and their Caucasian neighbors. The study sample consisted of 607 healthy children aged 7–18 years (55% Roma, 48% male) as part of the biracial (Roma–Caucasian) Slovak Lipid Community Study. Overall, frequency distribution data of Lp(a) were highly skewed to low concentrations, with markedly higher Lp(a) levels in Roma than in Caucasian children (median and range, mg/dL: 14.5; 0–159.2 vs 6.2; 0–112.3, P < 0.001), regardless of age and gender. Lp(a) was positively correlated with apo B (0.159, P = 0.004) in Roma, and LDL cholesterol (0.170, P = 0.005) in Caucasian children. In addition, daily income of the family was negatively related with Lp(a) in Roma (−0.134, P = 0.036) while positively in Caucasians (0.136, P = 0.047). For both race groups, no significant association was found between Lp(a) and age, body mass index, mean arterial pressure, smoking, and physical activity. Also, no significant relationships were examined between serum Lp(a) levels >30 mg/dL in children and family CVD risk factors, except for diabetes mellitus in parents of Caucasian origin (OR 4.46; 95%CI: 1.23–16.20). In a multivariate analysis, daily income, LDL cholesterol or apo B explained ~7% of the variance of Lp(a). This study suggests a significantly higher serum Lp(a) levels in Roma than in Caucasian children and a small effect, in general, of relevant CVD risk factors on the variation of Lp(a) levels in childhood.  相似文献   

3.
L-carnitine is popular as a potential ergogenic aid because of its role in the conversion of fat into energy. The present study was undertaken to investigate the effect of short term supplementation of L-carnitine on metabolic markers and physical efficiency tests under short term calorie restriction. Male albino rats were divided into four groups (n = 12 in each)—control, calorie restricted (CR for 5 days, 25 % of basal food intake), L-carnitine supplemented (CAR, given orally for 5 days at a dose of 100 mg/kg), CR with L-carnitine supplementation (CR + CAR). Food intake and body weight of the rats were measured along with biochemical variables like blood glucose, tissue glycogen, plasma and muscle protein and enzymatic activities of CPT-1 (carnitine palmitoyl transferase-1) and AMP kinase. Results demonstrated that L-carnitine caused marked increase in muscle glycogen, plasma protein, CPT-1 activity and swim time of rats (P < 0.05) on short term supplementation. In addition to the substantive effects caused by CR alone, L-carnitine under CR significantly affected muscle glycogen, plasma protein, CPT-1 activity and AMP kinase (P < 0.05). Short term CR along with L-carnitine also resulted in increased swim time of rats than control, CR and L-carnitine treated rats (P < 0.05). The present study was an attempt towards developing an approach for better adherence to dietary restriction regimen, with the use of L-carnitine.  相似文献   

4.
BackgroundEthanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥ 10%, v/v), QP, (≥ 2.5 g/L·h) and SC (≥ 90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied.ResultsThe initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~ 1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~ 140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180–200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different.ConclusionInitial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.How to cite: Sriputorn B, Laopaiboon P, Phukoetphim N, et al. Enhancement of ethanol production efficiency in repeated-batch fermentation from sweet sorghum stem juice: Effect of initial sugar, nitrogen and aeration. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.06.001  相似文献   

5.
BackgroundOpsonization, is the molecular mechanism by which target molecules promote interactions with phagocyte cell surface receptors to remove unwanted cells by induced phagocytosis. We designed an in vitro system to demonstrate that this procedure could be driven to eliminate adipocytes, using peptides mimicking regions of the complement protein C3b to promote opsonization and enhance phagocytosis. Two cell lines were used: (1) THP-1 monocytes differentiated to macrophages, expressing the C3b opsonin receptor CR1 in charge of the removal of unwanted coated complexes; (2) 3T3-L1 fibroblasts differentiated to adipocytes, expressing AQP7, to evaluate the potential of peptides to stimulate opsonization. (3) A co-culture of the two cell lines to demonstrate that phagocytosis could be driven to cell withdrawal with high efficiency and specificity.ResultsAn array of peptides were designed and chemically synthesized p3691 and p3931 joined bound to the CR1 receptor activating phagocytosis (p < 0.033) while p3727 joined the AQP7 protein (p < 0.001) suggesting that opsonization of adipocytes could occur. In the co-culture system p3980 and p3981 increased lipid uptake to 91.2% and 89.0%, respectively, as an indicator of potential adipocyte phagocytosis.ConclusionsThis in vitro model could help understand the receptor–ligand interaction in the withdrawal of unwanted macromolecules in vivo. The adipocyte-phagocytosis discussed may help to control obesity, since peptides of C3b stimulated the CR1 receptor, promoting opsonisation and phagocytosis of lipid-containing structures, and recognition of AQP7 in the differentiated adipocytes, favored the phagocytic activity of macrophages, robustly supported by the co-culture strategy.How to cite: Bartsch IM, Perelmuter K, Bollati-Fogolin M, et al. An in vitro model mimicking the complement system to favor directed phagocytosis of unwanted cells. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.09.010.  相似文献   

6.

Introduction:

Urinary tract infection (UTI) is one of the most common bacterial infectious diseases in children. The aim of this study was to determine the total prooxidant and antioxidant capacity of children with UTI, as well as changes of oxidative status parameters according to acute inflammation persistence and acute kidney injury (AKI) development.

Materials and methods:

The patients enrolled in the study comprised 50 Caucasian children (median age was 6 months) with UTI. Total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), inflammation marker C-reactive protein (CRP) and renal function parameters urea and creatinine were analyzed in patient’s serums.

Results:

According to duration of inflammation during UTI, TAS values were significantly higher (0.99 vs. 0.58 mmol/L, P = 0.017) and OSI values were significantly lower (0.032 vs. 0.041 AU, P = 0.037) in the subjects with longer duration of inflammation than in the subjects with shorter duration of inflammation. We did not find significant difference in basal values of oxidative status parameters according to AKI development.

Conclusions:

OSI values could detect the simultaneous change of TAS and TOS due to change in the oxidative-antioxidant balance during the recovery of children with UTI. TAS and OSI as markers of oxidative stress during UTI are sensitive to accompanying inflammatory condition. Further investigations are needed to evaluate whether TAS, TOS and OSI could be used to monitor disease severity in children with UTI.  相似文献   

7.
BackgroundOral cancer is one of the common malignant tumors of the head and neck. However, current treatments have numerous side effects, and drugs from natural sources may have better therapeutic potential. This research investigated the induction of apoptosis by α-hederin (α-HN), a constituent of Pulsatilla chinensis (Bunge) Regel, in the oral cancer cell line SCC-25 and its underlying mechanism.ResultsSCC-25 cells were treated with 50, 100, and 200 μmol/L α-HN. Cell proliferation; extent of apoptosis; activities of caspases-3, 8, and 9; and the expression of Bcl-2, Bax, phosphorylated (p)-phosphoinositide 3-kinase (PI3K), p-Akt, and p-mammalian target of rapamycin (mTOR) proteins were determined using the 3-(4,5)-2-thiazole-(2,5)-diphenyl tetrazolium bromide, flow cytometry, caspase activity detection kits, and western blot assays, respectively. The results showed that the proliferation of SCC-25 cells in the α-HN-treated groups decreased significantly, and the inhibitory effect was time and concentration dependent. Compared with cells in the control group, the extent of apoptosis increased significantly, caspase-3 and -9 activities were significantly enhanced, and the Bcl-2 level was lowered and the Bax level was elevated significantly in SCC-25 cells treated with α-HN for 48 h (P < 0.05). The expression of p-PI3K, p-Akt, and p-mTOR was also significantly lower in SCC-25 cells treated with α-HN than that in the control group (P < 0.05).ConclusionThese results indicate that α-HN can inhibit proliferation and induce apoptosis of SCC-25 cells and may exert these effects by inhibiting the PI3K/Akt/mTOR signaling pathway.How to cite: Wang H, Wu B, Wang H. Alpha-hederin induces the apoptosis of oral cancer SCC-25 cells by regulating PI3K/Akt/mTOR signaling pathway. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2018.12.005  相似文献   

8.

Introduction

Preanalytical specifications for urinalysis must be strictly adhered to avoid false interpretations. Aim of the present study is to examine whether the preanalytical factor ‘time point of analysis’ significantly influences stability of urine samples for urine particle and dipstick analysis.

Materials and methods

In 321 pathological spontaneous urine samples, urine dipstick (Urisys™2400, Combur-10-Test™strips, Roche Diagnostics, Mannheim, Germany) and particle analysis (UF-1000 i™, Sysmex, Norderstedt, Germany) were performed within 90 min, 120 min and 240 min after urine collection.

Results

For urine particle analysis, a significant increase in conductivity (120 vs. 90 min: P < 0.001, 240 vs. 90 min: P < 0.001) and a significant decrease in WBC (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), RBC (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), casts (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001) and epithelial cells (120 vs. 90 min P = 0.610, 240 vs. 90 min P = 0.041) were found. There were no significant changes for bacteria. Regarding urine dipstick analysis, misclassification rates between measurements were significant for pH (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), leukocytes (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), nitrite (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), protein (120 vs. 90 min P < 0.001, 240 vs. 90 min P<0.001), ketone (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), blood (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), specific gravity (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001) and urobilinogen (120 vs. 90 min, P = 0.031). Misclassification rates were not significant for glucose and bilirubin.

Conclusion

Most parameters critically depend on the time window between sampling and analysis. Our study stresses the importance of adherence to early time points in urinalysis (within 90 min).Key words: urinalysis, automation, analytical sample preparation methods, flow cytometry, specimen handling  相似文献   

9.
10.
BackgroundPlant tissue cultures have the potential to reprogram the development of microspores from normal gametophytic to sporophytic pathway resulting in the formation of androgenic embryos. The efficiency of this process depends on the genotype, media composition and external conditions. However, this process frequently results in the regeneration of albino instead of green plants. Successful regeneration of green plants is affected by the concentration of copper sulfate (CuSO4) and silver nitrate (AgNO3) and the length of induction step. In this study, we aimed at concurrent optimization of these three factors in barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and triticale (x Triticosecale spp. Wittmack ex A. Camus 1927) using the Taguchi method. We evaluated uniform donor plants under varying experimental conditions of in vitro anther culture using the Taguchi approach, and verified the optimized conditions.ResultsOptimization of the regeneration conditions resulted in an increase in the number of green regenerants compared with the control. Statistic Taguchi method for optimization of the in vitro tissue culture plant regeneration via anther cultures allowed reduction of the number of experimental designs from 27 needed if full factorial analysis is used to 9. With the increase in the number of green regenerants, the number of spontaneous doubled haploids decreased. Moreover, in barley and triticale, the number of albino regenerants was reduced.ConclusionThe statistic Taguchi approach could be successfully used for various factors (here components of induction media, time of incubation on induction media) at a one time, that may impact on cereals anther cultures to improve the regeneration efficiency.How to cite: Orłowska R, Pachota KA, Machczyńska J, et al. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.11.001.  相似文献   

11.
12.
IntroductionFollowing a pandemic, laboratory medicine is vulnerable to laboratory errors due to the stressful and high workloads. We aimed to examine how laboratory errors may arise from factors, e.g., flexible working order, staff displacement, changes in the number of tests, and samples will reflect on the total test process (TTP) during the pandemic period.Materials and methodsIn 12 months, 6 months before and during the pandemic, laboratory errors were assessed via quality indicators (QIs) related to TTP phases. QIs were grouped as pre-, intra- and postanalytical. The results of QIs were expressed in defect percentages and sigma, evaluated with 3 levels of performance quality: 25th, 50th and 75th percentile values.ResultsWhen the pre- and during pandemic periods were compared, the sigma value of the samples not received was significantly lower in pre-pandemic group than during pandemic group (4.7σ vs. 5.4σ, P = 0.003). The sigma values of samples transported inappropriately and haemolysed samples were significantly higher in pre-pandemic period than during pandemic (5.0σ vs. 4.9σ, 4.3σ vs. 4.1σ; P = 0.046 and P = 0.044, respectively). Sigma value of tests with inappropriate IQC performances was lower during pandemic compared to the pre-pandemic period (3.3σ vs. 3.2σ, P = 0.081). Sigma value of the reports delivered outside the specified time was higher during pandemic than pre-pandemic period (3.0σ vs. 3.1σ, P = 0.030).ConclusionIn all TTP phases, some quality indicators improved while others regressed during the pandemic period. It was observed that preanalytical phase was affected more by the pandemic.  相似文献   

13.
14.
Cystic Fibrosis Trans membrane conductance regulator (CFTR) gene is an asthma susceptibility gene. In the present study we investigated the possible association of CFTR gene mutations in Indian asthmatic children as compared to controls. The study included 250 asthmatics and 250 age and sex matched controls. Case to control ratio for sample size was 1:1. Genotyping was performed for 24 CFTR gene mutations by ARMS-PCR and PCR–RFLP method. Among 24 CFTR gene mutations, heterozygous allele of R553X mutation was found in 4 (1.6 %) asthmatic cases and 2 (0.8 %) controls. Value of FVC and FEV1/FVC ratio were significantly lower in heterozygous individuals (p value <0.05). No significant difference was observed in the genotype and allele frequency of R553X mutation (OR = 1.339, 95 % CI = 0.755–2.374, p value = 0.685). Furthermore, all wild type homozygous alleles were observed in remaining 23 CFTR gene mutations. Our data concludes that R553X mutation was not significantly associated in Indian asthmatic children.  相似文献   

15.

Introduction:

Non insulin dependent diabetes mellitus is the most common type of diabetes. Genetic factors, lipid profiles, hypertension are potential risk factors for diabetes mellitus. Adenosine binding cassette transporter proteins 1 (ABCA1) plays a role in cholesterol metabolism, especially high density lipoprotein (HDL-cholesterol). There are multiple mechanisms by which HDL-cholesterol can be atheroprotective, it is clear that the relative activity of ABCA1 plays a major role. We aimed to investigate association of ABCA1 C69T gene polymorphism with lipid levels in Turkish type 2 diabetic patients.

Materials and methods:

After isolation of DNA by ethanol precipitation we determined ABCA1 gene polymorphism by using polimerase chain reaction - restriction fragment lenght polymorphism (PCR-RFLP) method in 107 type 2 diabetic patients and 50 healthy controls.

Results:

We have observed that the frequency of TT genotype is significantly higher in healthy controls compared to patients (14% vs. 3%; P = 0.008). Also frequency of T allele was higher in controls than in patients (34% vs. 21%; P = 0.020; OR (95% CI) = 0.52 (0.30–0.88)). There was no association of lipid levels and ABCA1 C69T polymorphism subgroups.

Conclusion:

We have found significantly higher frequency of both T allele and genotype in control group when compared to patients that made us think that T allele may be a protective factor against diabetes mellitus. But, we could not find a relationship between genotypes and lipid concentrations in our two groups. Larger studies will help us to understand the relationship between ABCA1 C69T genotype and lipid parameters in diabetes mellitus.  相似文献   

16.
The misfolding of amyloid-β (Aβ) peptides from the natural unfolded state to β-sheet structure is a critical step, leading to abnormal fibrillation and formation of endogenous Aβ plaques in Alzheimer''s disease (AD). Previous studies have reported inhibition of Aβ fibrillation or disassembly of exogenous Aβ fibrils in vitro. However, soluble Aβ oligomers have been reported with increased cytotoxicity; this might partly explain why current clinical trials targeting disassembly of Aβ fibrils by anti-Aβ antibodies have failed so far. Here we show that Au23(CR)14 (a new Au nanocluster modified by Cys-Arg (CR) dipeptide) is able to completely dissolve exogenous mature Aβ fibrils into monomers and restore the natural unfolded state of Aβ peptides from misfolded β-sheets. Furthermore, the cytotoxicity of Aβ40 fibrils when dissolved by Au23(CR)14 is fully abolished. More importantly, Au23(CR)14 is able to completely dissolve endogenous Aβ plaques in brain slices from transgenic AD model mice. In addition, Au23(CR)14 has good biocompatibility and infiltration ability across the blood–brain barrier. Taken together, this work presents a promising therapeutics candidate for AD treatment, and manifests the potential of nanotechnological approaches in the development of nanomedicines.  相似文献   

17.
BackgroundIn order to produce an effective callus in Echinacea purpurea L.; determination of the explant type and growth regulators that best respond to callus induction and the optimization of the culture conditions to increase the amount of caffeic acid derivatives (CADs) in the obtained callus. CADs contents of callus cultures of E. purpurea were evaluated by establishing an effective callus induction system in vitro.ResultsVarious medium containing different growth regulators were tested using leaf, petiole, cotyledon and root as the explants. The best callus development was achieved in MS medium with 1.0 mg l−1 2,4-D + 2.0 mg l−1 BAP in leaf, 1.0 mg l−1 NAA + 0.5 mg l−1 TDZ in petiole, 2.0 mg l−1 NAA + 1.0 mg l−1 TDZ in cotyledon and 0.5 mg l−1 NAA + 0.5 mg l−1 BAP in roots. Upon optimisation of callus growth, each type of explant was cultured for 4, 6, 8 and 10 weeks in medium for the analyses of caftaric acid, chlorogenic acid, caffeic acid and chicoric acid contents. The highest amounts of caftaric acid (4.11 mg/g) and chicoric acid (57.89 mg/g) were found from petiole explants and chlorogenic acid (8.83 mg/g) from root explants at the end of the 10-week culture time.ConclusionsAs a result of the present study, the production of caffeic acid derivatives was performed by providing the optimization of E. purpurea L. callus cultures. Effective and repeatable protocols established in this study may offer help for further studies investigating the production of caffeic acid derivatives in vitro.How to cite: Tanur Erkoyuncu M, Yorgancilar M. Optimization of callus cultures at Echinacea purpurea L. for the amount of caffeic acid derivatives. Electron J Biotechnol 2021;51. https://doi.org/10.1016/j.ejbt.2021.02.003.  相似文献   

18.
2D nanomaterials generally exhibit enhanced physiochemical and biological functions in biomedical applications due to their high surface-to-volume ratio and surface charge. Conventional cancer chemotherapy based on nanomaterials has been hindered by their low drug loading and poor penetration in tumor tissue. To overcome these difficulties, novel materials systems are urgently needed. Hereby, the lanthanide-based porphyrin metal–organic framework (MOF) nanosheets (NSs) with promising cancer imaging/chemotherapy capacities are fabricated, which display superior performance in the drug loading and tumor tissue penetration. The biodegradable PPF-Gd NSs deliver an ultrahigh drug loading (>1500%) and demonstrate the stable and highly sensitive stimuli-responsive degradation/release for multimodal tumor imaging and cancer chemotherapy. Meanwhile, PPF-Gd NSs also exhibit excellent fluorescence and magnetic resonance imaging capability in vitro and in vivo. Compared to the traditional doxorubicin (DOX) chemotherapy, the in vivo results confirm the evident suppression of the tumor growth by the PPF-Gd/DOX drug delivery system with negligible side effects. This work further supports the potential of lanthanide-based MOF nanomaterials as biodegradable systems to promote the cancer theranostics technology development in the future.  相似文献   

19.
20.
BackgroundMaize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop.ResultsIn this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression–an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments.ConclusionsThis paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.How to cite: Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, et al. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号