首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

2.
在△ABC和△A′B′C′中,有如下的不等式1/aa′+1/bb′+1/cc′≥1/RR′   (1)其中a、b、c、R,a′、b′、c′、R′分别为△ABC和△A′B′C′的三边和外接圆半径,等号成立当且仅当a=b=c且a′=b′=c′。本文将其推广到双圆四边形(即既有外接圆又有内切圆的四边形),并给出几个猜想。定理 设双圆四边形ABCD、A′B′C′D′的边分别为a、b、c、d,a′、b′、c′、d′。它们的外接圆半径为分别为R、R′,则1/aa′+1/bb′+1/cc′+1/dd′≥2/RR′   (2)等号成立当且仅当a=b=c=d且a′=b′=c′=d′证明:首先我们有a2+b2+c2+d2≤8R2  …  相似文献   

3.
命题:△ABC的外接圆半径R与内切圆半径间成立不等式:R≥2r。证:(见原文图)过△ABC的顶点作对边的平行线,三直线围成△A′B′C′,则△ABC∽△A′B′C′,K=AB/A′B′=1/2。作外接圆的三条切线,分别平行于△A′B′C′的三边,围成△A″B″C″,(使△ABC的外接圆在为△A″B″C″的内切圆),△ABC∽△A″B″C″、  相似文献   

4.
本文先给出含双圆半径的几何性质: 定理1:设△ABC的外接圆半径为R,内切圆半径为r,顶点A、B、C到内心的距离分别为a0,b0,c0,则4Rr2=a0b0c0. 证明:因为r=(a0sin)A/2.=(b0sin)B/2=(c0sin)C/2. 所以r3=(a0b0c0sin)A/2(sin)B/2(sin)C/2因为△=1r/2(a+b+c)=Rr(sinA+sinB+sinC)=2R2sinAsinBsinC所以r/2R=sinA·sinB·sinC/sin+sinB+sinC又因为易证sinA+sinB+sinC=  相似文献   

5.
关于费尔马点的一个猜想的证明   总被引:1,自引:0,他引:1  
设F是△ABC内的费尔马点,延长AF、BF、CF分别交对边于A′、B′、C′。记AA′=x,BB′=y,CC′=z。文[1]猜想 1/x 1/y 1/z≥2/3(1/R 1/r)。 (1) 其中R、r分别表示△ABC的外接圆与内切圆半径。 本文将证明更优的结果: 1/x 1/y 1/z≥3/(4r) 1/(2R)。 (2) 引理1 设F是△ABC内部的费尔马  相似文献   

6.
关于垂足三角形外接圆半径之间有下面一个恒等式:定理设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,△ABC的面积,外接圆半径,内切圆半径分别为?,R,r,若△AEF,△BDF,△CDE的外接圆半径依次为R A,BR,RC,则cot cot cotA2B2C2R A+R B+RC2(R r)r=??.(1)证明如图,由文[1]知EF=a cos A,FD=b cos B,DE=c cos C,∵A2sinREF=A cos2sina A=A2sin cos,R A A=A H D AE BFC∴R A=R cos A.同理RB=R cos B,RC=R cos C.令cot cot cot,A2B2C2K=R A+R B+RC在△ABC中应用常见恒等式:?=rs,cot2422∑A=s?R?r?r,csc2422…  相似文献   

7.
设△ABC的三内角A,B,C所对的边分别为a,b,c,外接圆半径为R,则有正弦定理(a/sin A)=(b/sin B)=(c/sin C)=2R.余弦定理a~2=b~2+c~2-2bccos A,b~2\c~2+a~2-2cacos B,c~2=a~2+b~2-2abcos C.在学完正余弦定理后,老师给我们提出了这样的间题:由于正弦定理可变形为α=2Rsin A,b=2Rsin B,c=2RsinC三种形式,而余弦定理也有三种形式,因此,对于余弦定理是否也有类似于正  相似文献   

8.
以A、B、C,a、b、c,s,R分别表示△ABC的内角,边长,半周长,外接圆的半径,∑,∏分别表示循环和与循环积.我们有命题在△ABC中,有11∑sin A≥∑cos(A/2).(1)当且仅当△ABC为正三角形时等号成立.证明由∑sin1A=∑s∏ins iBn sAinC.12sin2cos2sinA∑A=∑A2sin2sin sinsinA B C=∑∏A  相似文献   

9.
凌燕 《数学教学》2007,(8):28-30
2007年春考有这样一道题(20题):通常用a、b、c分别表示△ABC三个内角A、B、C所对边长,R表示△ABC的外接圆半径,给定三个正实数a、b、R,其中b≤a,问a、b、R满足怎样关系时,以a、b为边长,R为外接圆半径的△ABC不存在,存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在情况下,用a、b、R表示C.  相似文献   

10.
正弦定理和余弦定理是解三角形的两个重要定理 ,也是竞赛中重点考查的内容之一 .本文浅谈由这两个定理联袂推出的结论及在竞赛中的应用 .在△ABC中 ,若 a,b,c分别是角 A,B,C的对边 ,由正弦定理可得 a=2 Rsin A,b=2 Rsin B,c=2 Rsin C(R为△ ABC的外接圆半径 ) ,代入余弦定理中 ,可得到它们的联袂结论 :sin2 A=sin2 B sin2 C- 2 sin Bsin Ccos A;sin2 B=sin2 A sin2 C- 2 sin Asin Ccos B;sin2 C=sin2 A sin2 B- 2 sin Asin Bcos C.同时还可以证明当 A B C=kπ(k为奇数 ) ,以上结论也成立 .1 给角求值例 1 求 cos2 73…  相似文献   

11.
三角形内角的余弦方程及应用   总被引:1,自引:0,他引:1  
设△ABC的三个内角为A,B,C,其对边分别为a,b,c;内切圆、外接圆的半径分别为r,R;半周长p=(1/2)(a b c),则cosA,cosB,cosC是方程的三个根. 证 在△ABC中,有tg(A/2)=r/(p-a),即两边平方,化简得 ∴cosA是方程的一个根,同理cosB,cosC也是方程的根。  相似文献   

12.
在△ABC中,内切圆与外接圆半径r与R满足: r=4Rsin(A/2)sin(B/2)sin(C/2)。 ①(见上海教育出版社的《三角形趣谈》82页)。利用另一公式  相似文献   

13.
巴西国提供的第34届IMO预选题如下:设锐角△ABC的外接圆半径R=1,内切圆半径为r,它的垂足三角形A′B′C′的内切圆半径为r′,求证:r′≤1-(1+r2)(1)本文将逐步消弱命题的条件,得到两个更简,更一般的结果。为叙述方便,约定a、b、c及a′、b′、c′分别为△ABC及△A  相似文献   

14.
第34届IMO一道预选题是: 设△ABC的外接圆半径R=1,内切圆半径为r,它的垂足三角形A′B′C′的内切圆半径为p。求证:  相似文献   

15.
与三角形的外接圆相内切,又与三角形的两条边相切的圆,称为三角形的半内切圆.本文将探讨三角形的半内切圆的一系列有趣性质.预备知识 △ABC的外接圆的半径为R,内切圆的半径为r,则r=4Rsin A/2 sin B/2 sin C/2.(证略)下面讨论三角形半内切圆的性质.  相似文献   

16.
难题征解     
52.锐角△ABC中,AD、BE、CF是三条高,H为垂心,记△ABC、△HBC、△HCA、△HAB的外接圆半径之和为m,内接圆半径之和为n,求证m+n=△ABC周长。 (安徽怀中黄全福提供) 53 设△ABC的旁切圆半径和面积分别为r_a、r_b、r_c、△,△A′B′C′的三边和面积分别为a′、b′、c′、△′。证明或否定r_a/a′+r_b/b′+r_c/c′≥3 3~(1/2)/2 (△/△′)~(1/2)等号当且仅当△ABC与△A′B′C′均为正三角形时成  相似文献   

17.
文[1]给出:若△DEF 是锐角△ABC 的垂足三角形,且记 BC=a,CA=b,AB=c,△ABC 的面积、外接圆半径分别为△和 R,△DEF 旁切圆半径依次为 r_D,r_E,r_F,则有(r_D)/(cot A)=(r_E)/(cot B)=(r_F)/(cot C)=△/R.(*)定理设△DEF 为锐角△ABC 的垂足三角形,记号同  相似文献   

18.
定理 设△ ABC的内心为 I,R,R1 ,R2 ,R3 分别是△ABC,△IBC,△ICA,△IAB的外接圆半径 ,则有R1 +R2 +R3 ≤ 3R,(1)R1 · R2 · R3 ≤ R3 . (2 )当且仅当△ ABC为正三角形时 ,(1)、(2 )取图 1等号 .证明 如图1,设 BC=a,CA=b,AB =c,因 I是△ABC的内心 ,则有sin∠ BIC=sin(180°- B+C2 ) =cos A2 .(3)由正弦定理及 (3)式可得R1 =a2 sin∠ BIC=2 Rsin A2 cos A2=2 Rsin A2 .同理可得R2 =2 Rsin B2 ,R3 =2 Rsin C2 .结合熟知的三角不等式sin A2 +sin B2 +sin C2 ≤ 32 及sin A2 sin B2 sin C2 ≤ 18,可得R1 +R2 +R…  相似文献   

19.
众所周知 ,在△ ABC中 ,A,B,C为三个内角 ,a,b,c为对应三边 ,R为△ABC的外接圆半径 ,则有正弦定理  asin A=bsin B=csin C=2 R.正弦定理是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理 .灵活运用正弦定理解几何题 ,往往可以避免因添设辅助线所带来的困难 ,而且在许多情况下 ,能使证明思路自然 ,解法简捷明快 .使用正弦定理 ,应注意它的变形 :(1) ab=sin Asin B,bc=sin Bsin C,ca=sin Csin A.这表明 ,通过正弦定理 ,可实现边长之比与角的正弦之比的相互转化 ,从而将边的关系转化为角的关系用三角知识来解决 ,或者是将…  相似文献   

20.
文[1]、文[2]分别给出了三角形外角平分线三角形的若干性质.它作为与一个三角形有着特殊关系的三角形,应有很多优美的性质,就像矿藏一样,不将这些矿藏从这个矿点里挖掘出来,总感到意犹未尽.基于这个想法,笔者进一步研究了三角形的外角平分线三角形.现将又得到的几个性质归结出来以飨读者.图1如图1,记△A′B′C′为△ABC的外角平分线三角形,△ABC的外接圆半径和内切圆半径分别为R、r,三内角A、B、C所对边的长分别为a、b、c,S为其半周长,△为其面积;△A′B′C′的三内角A′、B′、C′所对边的长分别为a′、b′、c′,△′为其面积.则:…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号