首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

2.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

3.
对于含多个字母的因式分解题,大多数学生都不知如何下手求解,在此,本人给出一种比较实用的方法,那就是以题中某个字母为主元,其他字母看成是常数,这样将多元问题变为一元问题,问题便轻易解决,下面举例说明.例1分解因式2x~2-5xy+2y~2+7x-5y+3.解:视x为未知元,变形,则有:原式=2x~2+(7-5y)x+(2y~2-5y+3)=2x~2+(7-5y)x+(y-1)(2y-3)=[2x-(y-1)][x-(2y-3)]  相似文献   

4.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

5.
把一个多项式化成几个整式的积的形式,叫做因式分解.正确理解因式分解的概念是学好因式分解的前提,要注意因式分解的"五忌".1.忌部分分解例1分解因式:x~2-y~2-z~2-2yz.错解原式=(x+y)(x-y)-z(z+2y).分析错在只是分解了原式的某些部分.正解原式=x~2-(y~2+z~2+2yz) =x~2-(y+x)~2=(x+y+z)(x-y-z).  相似文献   

6.
配方法是初中数学里的一种重要的思想方法,有广泛的应用.本文以近年中考试题为例,将其应用归纳如下.一、因式分解例1(2010年芜湖市)因式分解9x~2-y~2-4y-4=____.解:原式=9x~2-(y~2+4y+4)=(3x)~2-(y+2)~2=(3x+y+2)(3x-y-2)  相似文献   

7.
求函数 y=x+(1-2x)~(1/2)的值域,一般用如下方法:由函数式得 y-x=(1-2x)~(1/2)(1)两边平方得 y~2-2xy+y~2=1-2x(2)整理得 x~2-2(y-1)x+(y~2-1)=0 (3)∵ x 是实数,  相似文献   

8.
1990年“希望杯”全国数学邀请赛(初一)有一道试题(填空):当m=__时,二元二次六项式6x~2+mxy-4y~2-x+17y-15可以分解为两个关于x、y的二元一次三项式的乘积。 对于此题,《最新初中数学竞赛试题全解汇编》(科学技术文献出版社)一书提供的答  相似文献   

9.
课本中给出的二元二次多项式的因式分解,一般都是能直接(或通过转化)利用公式进行分解的简单形式,如:4x~2+4xy+y~2=(2x+ y)~2,x~2-(y-2)~2=(x+y-2)(x-y+2).但对于不能直接用公式的一般形式的二元二次  相似文献   

10.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

11.
题目设二次函数y=(a+b)x~2+2cx-(a-b)。其中a、b、c分别为ΔABC的三边,当x=-(1/2)时,二次函数的最小值为-(a/2)。试判断ΔABC的形状。(1994年甘肃省中考试题) 解由题意可设二次函数的解析式为 y=(a+b)(x+1/2)~2-(-(a/2)) =(a+b)x~2+(a+b)x+(b-a/4), 又∵y=(a+b)x~2+2cx-(a-b), 比较系数,得{a+b=2c, {b-a/4=-(a-b).解得 a=b=c。  相似文献   

12.
正随着新课改的不断深入,很多教师越来越重视课本中的例题教学了.大家的共识是:对课本中的例题进行变式教学,有利于提高数学课堂的教学效益.现举一例,说明如下.例题计算:(x-3)(x+3)(x~2+9).(苏科版七年级(下).解原式=(x~2-9)(x~2+9)=x~4-81.变式1计算:(1)(xy-3)(xy+3)(x~2y~2+9);(2)(x-3y)(x+3y)(x~2+9y~2);解(1)原式=(x~2y~2-9)(x~2y~2+9)=x~4y~4-81;  相似文献   

13.
错在哪里     
题:已知两条直线l_1:x+(1+m)y=2-m,l_2:2mx+4y=-16。(1)当m为何值时,l_1与l_2相交;(2)求直线l_1和l_2交点的轨迹。解 (1)将两直线的方程组成方程组 x+(1+m)y=2-m 2mx+4y=-16 这时 A_1/A_2=1/2m,B_1/B_2=1+m/4。当A_1/A_2≠B_1/B_2 解得m≠1或m≠-2 (2)将两直线的方程组成方程组,消去参数m,得:x~2+xy-2y~2-2x-10y-8=0 即(x-y-4)(x+2y+2)=0  相似文献   

14.
倒数方程是一种特殊的高次方程,它有四种基本类型,每种类型都有常规的解法。本文就从四个方面对这个问题作以综述。一、第一类型的偶次倒数方程的解法例1、解方程x~4+7x~3+14x~2+7x+1=0解:显然x=0不是方程的根,两边同除以x~2,得(x~2+(1/x~2))+7(x+(1/x))+14=0令x+(1/x)=y,测x~2+(1/x~2)=y~2-2测有y~2+7y+12=0(y+3)(y+4)=0∴y=3或y=4当x+(1/x)=-3时,x~2+3x+1=0  相似文献   

15.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

16.
我们知道,关于多元二次多项式的因式分解,常常利用待定系数法来解决,但这种方法需解若干个方程组成的方程组,工作量很大。若利用一元二次三项式的因式分解来解决多元二次多项式的因式分解,就可收到事半功倍之效果。 [例1] 把f(x,y)=x~2+3xy+2y~2+4x+5y+3因式分解。分析:若f(x,y)能分解,则它必分解为。f(x,y)=(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)之形式。事实上,就是确定a_1,b_1,c_1,a_2,b_2,c_2。关于对它们的具体确定可在下面过程中来完成。至于原理的推证,请读者自行完成。解:分别分解关于x,y的一元二次三项式。 x~2+4x+3=(x+1)(x+3)……① 2y~2+5y+3=(y+1)(2y+3)……②通过①、②可确定a_1=1,b_1=1,c_1=1,a_2=1,  相似文献   

17.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

18.
1 问题的提出很多的解析几何教学用书上都有下面的结论: 已知两圆C_: x~2+y~2+D_(1x)+E_(1y)+F_1=0,C_2: x~2+y~2+D_(2x)+E_(2y)+F_2=0与直线l:(D_1-D_2)x+(E_1-E_2)_y+(F_1-F_2)=0. (1) 若圆C_1与圆C_2相切,则直线l是过公切点  相似文献   

19.
一、化简、求值例1化简26√2√+3√+5√.解:原式=2·2√·3√2√+3√+5√=(2√+3√)2-(5√)22√+3√+5√=(2√+3√+5√)(2√+3√-5√)2√+3√+5√=2√+3√-5√.例2若x4+1x4=2,求x+1x的值.解:由x4+1x4=2,配方,得(x2+1x2)2=4,所以x2+1x2=2.再配方,得(x+1x)2=4,所以x+1x=±2.二、分解因式例3分解因式x4+4.解:原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).□郭安才三、解方程(组)例4解方程2x2+3y2-4xy-6y+9=0.解:原方程可变形为2(x-y)2+(y-3)2=0,∵2(x-y)2≥0,(y-3)2≥0,∴只有x-y=0,y-3=0时,原方程成立.解得x=3,y=3.故原方程的解是x=3,…  相似文献   

20.
例1.分解因式:x~2-4y~2。 解 x~2-4y~2=(x 2y)(x-2y) =x~2-4y~2。 剖析 本已分解,却又用整式乘法“还原”,这是初学者常犯的错误,问题在于不懂得因式分解的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号