首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
物理建模作为问题解决的一种方式,是解题过程的重要组成部分.它突出地表现了对原始问题的分析、假设、抽象的物理加工过程和物理工具、方法、模型的选择推理过程以及模型的求解、论证、再分析、修改假定、再求解的迭进过程;较完整地体现出学物理与用物理的关系,为最终解决问题奠定了坚实的基础.  相似文献   

2.
数学问题解决中的元认知问卷量表的设计   总被引:2,自引:2,他引:2  
数学问题解决中元认知问卷量表的设计应以数学问题解决中的元认知知识、元认知体验、元认知策略3者为基本因素.施测问卷过程中对数据进行探索性因素分析和验证性因素分析,检验因素假设与数据之间的拟合程度.结果表明:理论假设与数据间有较好的拟合,且“三主因素九次因素”假设与数据间的拟合更佳.  相似文献   

3.
李娜 《中学物理》2021,(4):14-16
为了深入了解学生在解决原始物理问题中存在的困难,以及对原始物理问题的深度解答,本文以邢红军教授提出的解决原始物理问题的自组织表征理论为基础,以表征理论的现实意义为切入口,通过正反两方对"曹冲称象"中水位变化为原始物理问题,通过多种思维方式深度解答水位变化的原始物理问题.  相似文献   

4.
张飞 《物理教学》2012,(8):15-17
当前物理教学中,学生所面对的"问题"大多数是教师通过对实际(原始)问题的合理分解、简化和抽象后形成的"问题",这类"问题"与实际(原始)问题相距甚远。至使训练目标存在许多局限性,不利于培养学生发现问题和转化问题的创新能力,不利于激励学生的创新思维。为了改变这种的教学现状,提升物理课堂"问题化"教学效益,物理课堂问题化教学中"问题"设计的重要途径之一是基于实验建构原始问题,让学生亲历物理实际(原始)问题的解决过程,从而达成实现培养学生创新思维能力的功效。  相似文献   

5.
文章从“原始物理问题”与“抽象问题”概念辨析入手,通过分析原始问题的解决途径,结合自己的教育实践,就原始物理问题的思维特征进行探讨,揭示出原始物理问题的解决,是学习者的一种体验活动,具有鲜明的图景思维特征;揭示出原始问题的顺利解决对学习者掌握的物理知识、物理方法及物理常数有很强的依赖性;揭示出原始物理问题解决具有多端性特点,从而提出原始物理问题教育和抽象问题教育并肩而行的教育方法。  相似文献   

6.
数学模型建构的一般方法为:模型准备、模型假设、模型建立、模型检验、模型应用。学生循着现象→本质→现象,或者具体→抽象→具体的思路,通过分析问题→探究数学规律→解决实际问题→建构数学模型。物理实体模型建构的一般方法为:提出问题、根据假设建立模型、检验模型、得出结论,通过抽象建立物理对象,通过类比和假说建立物理过程,并进行实验模拟的过程,培养学生分析综合等能力。概念模型的建模过程:明确任务及各因素的特性、建立各因素之间关系、确定各因素之间的影响方式,完善模型,有助于理解和把握生物学的核心概念。  相似文献   

7.
作者针对高中物理教学中的习题教学中存在的问题,提出原始物理问题的概念。传统物理习题一般是教师把物理问题分解或抽象成一定的模型后再提交给学生,这就导致经历题海战术的学生没有能力解决一些实际问题。在教学中应加强训练学生解决原始物理问题的能力。  相似文献   

8.
在"双减"背景下,对学生的物理原始问题进行教学是实现教学的知识结构化、任务情境化和学习实践化的根本路径.笔者以中考压轴题中的原创题为案例进行分析、拆解、揭示,在原创题与习题的转化过程中,强化学生在创设情境中建构物理模型的能力.在解决原始问题的过程中,以模型建构能力为核心,落实培养学生科学思维能力的目标.  相似文献   

9.
鲍尧红 《考试周刊》2012,(6):134-135
当今社会对教育的要求越来越高.也就造成教育对学生的能力要求更高了.但是许多学生虽然掌握书本知识很牢固,但是对于要解决来源于生活的原始物理问题时经常是无从下手。许多学生在遇到原始物理问题只会生搬硬套,不能正确地分析物理过程。形成相应的物理图景,这说明学生对于解决原始物理问题困难的原因在于对已经习得的物理模型的迁移能力不强。于克明教授认为:“传统的物理教学,在原始问题到抽象问题之间.从原型到模型产生了一个断带、一个鸿沟,成为解决实际问题的一大障碍。”  相似文献   

10.
物理教学中要注重物理模型的建构,学生在运用物理知识解决实际问题时需要"去理想化"的思维。去理想化是理想化建模的逆向过程,去理想化物理问题介于原始物理问题和理想化问题之间,层次性强,对学生解决实际问题能力的培养和教学完善都有启示作用。  相似文献   

11.
物理教学是通过引导学生去探索、解决一个个未知的问题,从而达到掌握知识、发展智力、培养能力的教学目标.本文以该目标为出发点,阐述了物理问题的产生,物理问题解决中存在的障碍和问题解决的一般方法,为培养学生分析问题和解决问题的能力寻找一条有效教学途径.  相似文献   

12.
Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger’s development of the wave equation and Feynman’s development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.  相似文献   

13.
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.  相似文献   

14.
我国物理能力测量一直沿用习题形式。由于习题的呈现形式是已被抽象的物理情境,因而使物理能力测量的有效性难以得到保证。基于此,编制了原始物理问题测量工具并选取中学生进行了抽样测量。结果表明,原始物理问题测量工具不仅具有很好的信度与效度,而且能有效测量中学生解决物理问题的能力。  相似文献   

15.
初中物理与数学关系密切,数学是解答物理问题的重要工具.教师有目的、有梯度地引导学生运用数学知识(如“比例的性质”)解答数学问题,对提高学生的思维能力及分析问题的能力大有好处.  相似文献   

16.
Recently, the importance of an everyday context in physics learning, teaching, and problem‐solving has been emphasized. However, do students or physics educators really want to learn or teach physics problem‐solving in an everyday context? Are there not any obstructive factors to be considered in solving the everyday context physics problems? To obtain the answer to these questions, 93 high school students, 36 physics teachers, and nine university physics educators participated in this study. Using two types of physics problems—everyday contextual problems (E‐problems) and decontextualized problems (D‐problems)—it was found that even though there was no difference in the actual performance between E‐problems and D‐problems, subjects predicted that E‐problems were more difficult to solve. Subjects preferred E‐problems on a school physics test because they thought E‐problems were better problems. Based on the observations of students' problem‐solving processes and interviews with them, six factors were identified that could impede the successful solution of E‐problems. We also found that many physics teachers agreed that students should be able to cope with those factors; however, teachers' perceptions regarding the need for teaching those factors were low. Therefore, we suggested teacher reform through in‐service training courses to enhance skills for teaching problem‐solving in an everyday context.  相似文献   

17.
我国物理新课标中明确要求学生应具有"分析解决问题的能力"。因此,我们需要探讨物理教学中如何培养学生的问题解决能力。在讨论了物理问题解决能力内涵后,探讨在物理教学中培养学生问题解决能力的方法。  相似文献   

18.
The Physics Metacognition Inventory was developed to measure physics students’ metacognition for problem solving. In one of our earlier studies, an exploratory factor analysis provided evidence of preliminary construct validity, revealing six components of students’ metacognition when solving physics problems including knowledge of cognition, planning, monitoring, evaluation, debugging, and information management. The college students’ scores on the inventory were found to be reliable and related to students’ physics motivation and physics grade. However, the results of the exploratory factor analysis indicated that the questionnaire could be revised to improve its construct validity. The goal of this study was to revise the questionnaire and establish its construct validity through a confirmatory factor analysis. In addition, a Rasch analysis was applied to the data to better understand the psychometric properties of the inventory and to further evaluate the construct validity. Results indicated that the final, revised inventory is a valid, reliable, and efficient tool for assessing student metacognition for physics problem solving.  相似文献   

19.
In this paper I place physics teaching, and the inclusion of the history of physics into teaching, within a wide context. I start from the conviction that there are considerable changes ahead in the life circumstances of people in western industrial societies. This expectation should influence our aims of education generally, and in particular the aims of physics teaching. The paper does not offer final solutions, but analyses the situation and thereby argues for a change in perspective in physics teaching. The main idea is that physics teaching has to solve the problem of balancing seemingly incompatible needs, for example, conveying a stock of stable, dependable physics knowledge to students, and on the other hand to train them to see their physics knowledge within varying contexts of change. It is argued that the history of physics can be of high value in solving this problem.This article was originally published in: F. Bevilacqua and P.J. Kennedy (eds.): 1983, Proceedings of the Conference on Using History of Physics in Innovatory Physics Education, Pavia University.  相似文献   

20.
黎旦  樊爱琼 《高教论坛》2005,(5):117-122
在物理学习中,最难的是解决物理问题,如何解决这个难题,本文调查分析了学生在解题过程中主要存在的几种思维障碍及产生原因,并提出了突破这些思维障碍的途径和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号