首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The aim of this study was to analyse the pacing strategies adopted by elite male and female marathon runners when setting every world record since 1998. For data analysis, the total distance of the marathon was divided into eight sections of 5?km and a final section of 2.195?km, and the relative average speed of each section was calculated individually. Female athletes maintained similar speeds in the first and second half of the marathon (ES?=?0.22, small effect, p?=?0.705), whereas male athletes increased their speed as the marathon progressed (ES?=?1.18, moderate effect, p?=?0.011). However, no differences were observed between men and women in either the first (ES?=?0.56, small effect, p?=?0.290), or in the second half of the marathon (ES?=?0.60, moderate effect, p?=?0.266). When comparing the women’s world records (1998–2003) vs. men’s records (1998–2018) by sections, we observed differences at the beginning of the race (second section, ES?=?0.89, moderate effect) and at the end (last section, ES?=?0.87, moderate effect). The pace variations during the race were similar between male athletes and that of women with male pacemakers (1.53%?±?0.60 vs. 1.68%?±?0.84, respectively). However, a trend towards higher pace variations during the race in the female records with female pacemakers was observed (2.28%?±?0.95). This study shows how male and female marathon records in the last 20 years have been set using different pacing strategies. While men used a negative strategy (faster finishing), women used a less uniform pacing strategy.  相似文献   

2.
The aim of this study was to analyse the influence of the pacing strategy adopted by elite marathon runners when setting every marathon world record in the last 50 years. We divided former marathon record holders into two groups: classic athletes (record holders between 1967 and 1988) and contemporaneous athletes (record holders between 1988 and 2018). The total distance of the marathon was divided into 8 sections of 5?km and 1 last section of 2.195?km, and the relative average speed of each section was calculated individually. On average athletes were slightly faster in the first half-marathon than in the second one, where they slowed down progressively (ES?=?0.28, small effect). However, when comparing classic vs. contemporaneous athletes, we observed that classic athletes started significantly faster (p?相似文献   

3.
The aim of this study is to determine changes in sedentary behaviour in response to extensive aerobic exercise training. Participants included adults who self-selected to run a marathon. Sedentary behaviour, total activity counts and physical activity (PA) intensity were assessed (Actigraph GT3X) for seven consecutive days during seven assessment periods (?3, ?2, and ?1 month prior to the marathon, within 2 weeks of the marathon, and +1, +2, and +3 months after the marathon). Models were fitted with multiple imputation data using the STATA mi module. Random intercept generalized least squares (GLS) regression models were used to determine change in sedentary behaviour with seven waves of repeated measures. Results: Twenty-three individuals (mean?±?Sx: 34.4?±?2.1y, 23.0?±?1.9% fat, 15 women, 8 men) completed the study. Marathon finishing times ranged from 185 to 344 minutes (253.2?±?9.6 minutes). Total counts in the vertical axis were 1,729,414 lower one month after the race, compared with two months prior to the race (peak training). Furthermore, counts per minute decreased by 252.7 counts·minute?1 during that same time period. Daily sedentary behaviour did not change over the seven assessment periods, after accounting for age, gender, per cent body fat, wear time, marathon finishing time, and previous marathon experience. This prospective study supports the notion that PA and sedentary behaviours are distinct, showing that sedentary behaviour was not impacted by high levels of aerobic training.  相似文献   

4.
Abstract Several recent investigations showed that the best marathon time of an individual athlete is also a strong predictor variable for the race time in a 100-km ultra-marathon. We investigated similarities and differences in anthropometry and training characteristics between 166 100-km ultra-marathoners and 126 marathoners in recreational male athletes. The association of anthropometric variables and training characteristics with race time was assessed by using bi- and multi-variate analysis. Regarding anthropometry, the marathoners had a significantly lower calf circumference (P?相似文献   

5.
The aim of this study was to compare the effects of two different intensity distribution training programmes (polarized (POL) and threshold (THR)) on aerobic performance, strength and body composition variables in ultra-endurance runners. Twenty recreationally trained athletes were allocated to POL (n?=?11; age: 40.6?±?9.7 years; height: 175.4?±?7?cm; weight: 73.5?±?10.8?kg; fat mass 18.4?±?6.0%; VO2max: 55.8?±?4.9?ml/kg/min) or THR group (n?=?9; age: 36.8?±?9.2 years; height: 178.5?±?4.2?cm; weight: 75.5?±?10.4?kg; fat mass 14.9?±?5.3%; VO2max: 57.1?±?5.2?ml/kg/min) and performed the 12 weeks training programme. Both programmes had similar total time and load but a different intensity distribution (POL?=?79.8?±?2.1% in Zone 1; 3.9?±?1.9% in Zone 2; 16.4?±?1.5% in Zone 3; THR?=?67.2?±?4.6% in Zone 1; 33.8?±?4.6% in Zone 2; 0% in Zone 3). Body composition, isokinetic strength and aerobic running performance were measured before and after each programme. Both groups decreased fat mass after training (POL= Δ–11.2%; p?=?.017; ES?=?0.32; THR= Δ–18.8%; p?p?=?0.003; ES?=?0.71) and 12?km/h (Δ–4.5%; p?=?.026; ES?=?0.73) and running time to exhaustion (Δ2.4%; p?=?.011; ES?=?0.33). No changes were observed in strength and no significant differences were observed between the group in any variable. Compared with THR distribution, 12 weeks of POL training efficiently improves aerobic performance in recreational ultra-endurance runners.  相似文献   

6.
Abstract

We investigated the associations of anthropometry, training, and pre-race experience with race time in 93 recreational male ultra-marathoners (mean age 44.6 years, s = 10.0; body mass 74.0 kg, s = 9.0; height 1.77 m, s = 0.06; body mass index 23.4 kg · m?2, s = 2.0) in a 100-km ultra-marathon using bivariate and multivariate analysis. In the bivariate analysis, body mass index (r = 0.24), the sum of eight skinfolds (r = 0.55), percent body fat (r = 0.57), weekly running hours (r = ?0.29), weekly running kilometres (r = ?0.49), running speed during training (r = ?0.50), and personal best time in a marathon (r = 0.72) were associated with race time. Results of the multiple regression analysis revealed an independent and negative association of weekly running kilometres and average speed in training with race time, as well as a significant positive association between the sum of eight skinfold thicknesses and race time. There was a significant positive association between 100-km race time and personal best time in a marathon. We conclude that both training and anthropometry were independently associated with race performance. These characteristics remained relevant even when controlling for personal best time in a marathon.  相似文献   

7.
ABSTRACT

The purpose of this study was to determine the influence of different wheel size diameters on indicators of cross-country mountain bike time trial performance. Nine competitive male mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) performed 1 lap of a 3.48 km mountain bike (MTB) course as fast as possible on 26″, 27.5″ and 29″ wheeled MTB. Time (s), mean power (W), cadence (revs · min?1) and velocity (km · h?1) were recorded for the whole lap and during ascent and descent sections. One-way repeated measure ANOVA was used to determine significant differences. Results revealed no significant main effects for any variables by wheel size during all trials, with the exception of cadence during the descent (F(2, 16) = 8.96; P = .002; P2 = .53). Post hoc comparisons revealed differences lay between the 26″ and 29″ wheels (P = .02). The findings indicate that wheel size does not significantly influence performance during cross-country when ridden by trained mountain bikers, and that wheel choice is likely due to personal choice or sponsorship commitments.  相似文献   

8.
ABSTRACT

We aimed to evaluate the changes in double poling (DP) kinematics due to a long-distance cross-country skiing race in athletes with different performance levels. A total of 100 cross-country skiers, belonging to 10 different performance groups, were filmed on flat terrain 7 and 55 km after the start line, during a 58-km classical race. Cycle velocity, frequency and length decreased from the best to the lower-ranked group, while duty cycle increased (all P <.001). Between track sections, cycle velocity and length decreased, duty cycles increased (all P <.001) while frequency was unaltered (P =.782). Group*section interactions resulted for cycle velocity (P =.005). Considering all the participants together, % change in cycle velocity between sections correlated with % change in length and duty cycle (all P <.001). Thus i) skiers in better groups showed longer and more frequent cycles as well as shorter duty cycles than skiers in slower groups; ii) throughout the race all the groups maintained the same cycle frequency while decreasing cycle velocity and length; iii) better groups showed a lower reduction in cycle velocity. Individually, a low reduction in cycle velocity during the race related to the capacity to maintain long cycles and short duty cycles.  相似文献   

9.
We analyzed gait and function of the supporting limb in participants of a marathon race at three stages: prerace, midrace (18 km), and near the end of the race (36 km). We confirmed that the most successful runners were able to maintain running speed for the duration of the race with little change in speed or gait. Speed slowed progressively during the race for those with slower race times, but stride frequency–stride length relationships remained normal for the speed they ran. These findings differ from most lab-based studies of fatigue, in which runners are forced to match a constant preset treadmill speed. Small changes in maximum ground force were seen in both slow- and fast-running participants as race end approached.  相似文献   

10.
Prolonged running results in lowering of the foot arch and a low arch is associated with subsequent chronic injuries. Foot posture alteration and recovery following a marathon run remain unknown. Therefore, the present study aimed to evaluate foot posture alteration following a full marathon run. The three-dimensional foot posture data of 11 collegiate runners were obtained using an optical foot scanner system before, and immediately, 1 day, 3 days, and 8 days after a full marathon. The navicular height and arch height ratio significantly decreased from before to immediately, 1 day, 3 days, and 8 days after the marathon (navicular height: before, 44.2?±?5.0?mm; immediately after, 39.4?±?5.5?mm; 1 day, 37.7?±?6.2?mm; 3 days, 38.7?±?5.5?mm; 8 days, 37.6?±?5.7?mm; arch height ratio: before, 18.4?±?1.9; immediately after, 16.5?±?2.5; 1 day, 15.7?±?2.5; 3 days, 16.2?±?2.6; 8 days, 15.6?±?2.2, P?, respectively). By contrast, the dorsal height significantly increased from before and immediately after to 1 day after the marathon, and then significantly decreased until 8 days after the marathon (P?). These results indicate that the recovery patterns of the dorsal and navicular heights following a marathon did not coincide; the dorsal height rose temporally at 1 day after and subsequently decreased, but the navicular height decreased throughout the 8-day period after the marathon. More than one week may be necessary for sufficient foot alignment recovery from marathon-induced changes.  相似文献   

11.
Biomechanical differences in double poling (DP) between sex and performance level were investigated in female and male cross-country skiers during a classical race (10/15 km). Skiers were divided into faster and slower on basis of race performance: females faster (n=20), females slower (n=20), males faster (n=20), and males slower (n=20). Based on video analysis while DP in a flat section of the track, joint and pole angles at pole plant (PP) and pole-off, cycle characteristics and the use and coordination pattern of heel-raise (raise of heels from the ground to have a higher body position at PP) were analysed. Faster females and males had 4.3% and 7.8% higher DP velocity than their slower counterparts (both P<0.001). Faster males had 6.5% longer cycles than slower males (P<0.001). Faster skiers stopped heel-raise later than slower skiers (females: 2.0±3.4% vs. ?1.0±3.5%, P<0.05; males: 3.9±2.4% vs. 0.8±3.2% of cycle time in relation to PP, P<0.001). At PP, faster skiers and male skiers had a smaller pole angle and greater ankle to hip and ankle to shoulder angle with respect to vertical, resulting in a more distinct forward body lean. However, the majority of the differences are likely due to higher DP velocity.  相似文献   

12.
Literature has established that a range of physiological, biomechanical, and training variables influence marathon performance. The influence of anthropometric characteristics has also received attention. However, despite major marathons exceeding 40,000 participants and approximately a third of these runners being female, no data exist on the influence of the breast on running performance. This cross-sectional study aimed to explore the impact of breast mass on marathon finish time. One hundred and sixty-eight of 321 female marathon runners contacted completed an on-line survey focusing on marathon performance during the 2012 London marathon. Participants were categorised as smaller (<500?g, 54%) or larger breasted (>500?g, 46%). Regression analysis identified that 24% of marathon performance variance could be explained by body mass index (BMI), but breast mass improved the model to explain 28% of performance variation. The model determined that for women with 32/34 or 36/38 underband each increase in cup size equates to a performance decrement of 4.6?min or 8.6 min, equivalent to 34.4?min difference between a woman with 36A compared to 36DD breast size. Larger breasted runners had greater BMIs, completed less marathons and had slower marathon finish times (316?±?48?min) compared to smaller breasted runners (281?±?51?min). Twenty-five per cent less larger breasted women finished in the fastest quartile. These results suggest that differences in breast mass are an important factor for female athletes and should be considered in future research in this area.  相似文献   

13.
The potential effect of fatigue on stroke production in tennis players is still controversial. The aim of this study was to analyse the tennis serve speed and accuracy in prolonged male professional matches played on grass courts. We analysed tennis serve statistics from five-set Wimbledon matches (n?=?15; 30 players). Results showed that match duration averaged 208.3?±?28.3?min. The overall serve speed was 177.0?±?10.2?km/h in the first set and 176.1?±?11.7?km/h in the fifth set (p?=?.34). The difference of all accuracy values of first set serves was not significantly different from those of the fifth set: percentage of valid first serves, 63.1?±?11.1% vs. 62.3?±?11.8%, respectively (p?=?.78); percentage of “aces”, 11.2?±?9.1% vs. 10.0?±?8.9%, respectively (p?=?.39); percentage of “winners”, 2.6?±?7.6% vs. 1.2?±?2.2%, respectively (p?=?.36); percentage of “double faults”, 2.8?±?3.0% vs. 2.8?±?3.4% (p?=?.97). In conclusion, tennis players were able to maintain constant serve speed and accuracy over five-set matches played on grass courts. Professional tennis players are capable of overcoming fatigue and/or make movement adjustments to effectively perform complex technical strokes like the serve throughout matches played on grass courts lasting more than 3?h in average.  相似文献   

14.
The purpose of this study was to analyse the effect of bike type – the 26-inch-wheel bike (26“ bike) and the 29-inch-wheel bike (29“ bike) – on performance in elite mountain bikers. Ten Swiss National Team athletes (seven males, three females) completed six trials with individual start on a simulated cross-country course with 35 min of active recovery between trials (three trials on a 26“ bike and three trials on a 29“ bike, alternate order, randomised start-bike). The course consisted of two separate sections expected to favour either the 29“ bike (section A) or the 26“ bike (section B). For each trial performance, power output, cadence and heart rate were recorded and athletes’ experiences were documented. Mean overall performance (time: 304 ± 27 s vs. 311 ± 29 s; P < 0.01) and performance in sections A (P < 0.001) and B (P < 0.05) were better when using the 29“ bike. No significant differences were observed for power output, cadence or heart rate. Athletes rated the 29“ bike as better for performance in general, passing obstacles and traction. The 29“ bike supports superior performance for elite mountain bikers, even on sections supposed to favour the 26“ bike.  相似文献   

15.
The purpose of this study was to provide a more detailed analysis of performance in cross-country skiing by combining findings from a differential global positioning system (dGPS), metabolic gas measurements, speed in different sections of a ski-course and treadmill threshold data. Ten male skiers participated in a freestyle skiing field test (5.6?km), which was performed with dGPS and metabolic gas measurements. A treadmill running threshold test was also performed and the following parameters were derived: anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio = 1, onset of blood lactate accumulation and peak oxygen uptake ([Vdot]O2peak). The combined dGPS and metabolic gas measurements made detailed analysis of performance possible. The strongest correlations between the treadmill data and final skiing field test time were for [Vdot]O2peak (l?·?min?1), respiratory exchange ratio = 1 (l?·?min?1) and onset of blood lactate accumulation (l?·?min?1) (r = ?0.644 to ??0.750). However, all treadmill test data displayed stronger associations with speed in different stretches of the course than with final time, which stresses the value of a detailed analysis of performance in cross-country skiing. Mean oxygen uptake ([Vdot]O2) in a particular stretch in relation to speed in the same stretch displayed its strongest correlation coefficients in most stretches when [Vdot]O2 was presented in units litres per minute, rather than when [Vdot]O2 was normalized to body mass (ml?·?kg?1?·?min?1 and ml?·?min?1?·?kg?2/3). This suggests that heavy cross-country skiers have an advantage over their lighter counterparts. In one steep uphill stretch, however, [Vdot]O2 (ml?·?min?1?·?kg?2/3) displayed the strongest association with speed, suggesting that in steep uphill sections light skiers could have an advantage over heavier skiers.  相似文献   

16.
Abstract

We designed a laboratory test with variable fixed intensities to simulate cross-country mountain biking and compared this to more commonly used laboratory tests and mountain bike performance. Eight competitive male mountain bikers participated in a cross-country race and subsequently did six performance tests: an individual outdoor time trial on the same course as the race and five laboratory tests. The laboratory tests were as follows: an incremental cycle test to fatigue to determine peak power output; a 26-min variable fixed-intensity protocol using an electronically braked ergometer followed immediately by a 1-km time trial using the cyclist's own bike on an electronically braked roller ergometer; two 52-min variable fixed-intensity protocols each followed by a 1-km time trial; and a 1-km time trial done on its own. Outdoor competition time and outdoor time trial time correlated significantly (r = 0.79, P < 0.05). Both outdoor tests correlated better with peak power output relative to body mass (both r = ?0.83, P < 0.05) than absolute peak power output (outdoor competition: r = ?0.65; outdoor time trial: r = ?0.66; non-significant). Outdoor performance times did not correlate with the laboratory tests. We conclude that cross-country mountain biking is similar to uphill or hilly road cycling. Further research is required to design sport-specific tests to determine the remaining unexplained variance in performance.  相似文献   

17.
The effects of training with overweight and underweight cricket balls on fast-bowling speed and accuracy were investigated in senior club cricket bowlers randomly assigned to either a traditional (n = 9) or modified-implement training (n = 7) group. Both groups performed bowling training three times a week for 10 weeks. The traditional training group bowled only regulation cricket balls (156 g), whereas the modified-implement training group bowled a combination of overweight (161?-?181 g), underweight (151?-?131 g) and regulation cricket balls. A radar gun measured the speed of 18 consecutive deliveries for each bowler before, during and after the training period. Video recordings of the deliveries were also analysed to determine bowling accuracy in terms of first-bounce distance from the stumps. Bowling speed, which was initially 108?±?5 km?·?h?1 (mean?±?standard deviation), increased in the modified-implement training group by 4.0 km?·?h?1 and in the traditional training group by 1.3 km?·?h?1 (difference, 2.7 km?·?h?1; 90% confidence limits, 1.2 to 4.2 km?·?h?1). For a minimum worthwhile change of 5 km?·?h?1, the chances that the true effect on bowling speed was practically beneficial/trivial/harmful were 1.0/99/<?0.1%. For bowling accuracy, the chances were 1/48/51%. This modified-implement training programme is not a useful training strategy for club cricketers.  相似文献   

18.
19.
Abstract The aims of this study were to examine ground contact characteristics, their relationship with race performance, and the time course of any changes in ground contact time during competitive 800?m and 1500?m races. Twenty-two seeded, single-sex middle-distance races totalling 181 runners were filmed at a competitive athletics meeting. Races were filmed at 100?Hz. Ground contact time was recorded one step for each athlete, on each lap of their race. Forefoot and midfoot strikers had significantly shorter ground contact times than heel strikers. Forefoot and midfoot strikers had significantly faster average race speed than heel strikers. There were strong large correlations between ground contact time and average race speed for the women's events and men's 1500?m (r?=?-0.521 to -0.623; P?相似文献   

20.
The primary aim of this study was to determine whether variations in rebound speed and accuracy of a tennis ball could be detected during game-simulated conditions when using three rackets strung with three string tensions. Tennis balls were projected from a ball machine towards participants who attempted to stroke the ball cross-court into the opposing singles court. The rebound speed of each impact was measured using a radar gun located behind the baseline of the court. An observer also recorded the number of balls landing in, long, wide and in the net. It was found that rebound speeds for males (110.1?±?10.2?km?·?h?1; mean?±?s) were slightly higher than those of females (103.6?±?8.6?km?·?h?1; P?<?0.05) and that low string tensions (180?N) produced greater rebound speeds (108.1?±?9.9?km?·?h?1) than high string tensions (280?N, 105.3?±?9.6?km?·?h?1; P?<?0.05). This finding is in line with laboratory results and theoretical predictions of other researchers. With respect to accuracy, the type of error made was significantly influenced by the string tension (P?<?0.05). This was particularly evident when considering whether the ball travelled long or landed in the net. High string tension was more likely to result in a net error, whereas low string tension was more likely to result in the ball travelling long. It was concluded that both gender and the string tension influence the speed and accuracy of the tennis ball.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号