首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气体分子运动论一.理想气体状态方程1.明确什么叫平衡状态,什么叫状态参量。2.掌握理想气体状态方程及应用。(1)明确状态方程.pV=vRT中p、V、T、v各状态参量的含义。(2)掌握体积V和压强p常用的单位以及它们之间的换算关系。(3)运用状态方程分析和解决一些不太复杂的具体问题。3.明确理想气体的宏观定义。二.分子运动论的基本概念1.明确分子运动论的三个基本假设。2.掌握理想气体微观模型的特点。三.理想气体的压强公式  相似文献   

2.
气体的压强就是作无规则运动的大量气体分子碰撞器壁时,作用于器壁单位面积上的平均冲力。气体分子越大,运动的越快,分子施于器壁的冲力越大,因而压力就越大。根据这一假定,便可从分子的微观模型出发,用统计平均的方法推导出理想气体的压强公式。一、理想气体的微观假设对于理想气体,从宏观上定义,它是实际气体在压强趋于零时的极限情况。在建立理想  相似文献   

3.
基于气体分子动理论和理想气体的微观模型给出理想气体的压强和温度的计算公式.由这两个公式从微观层面解释理想气体的压强和温度的本质,进而可以帮助解释和分析一些宏观物理现象.从微观角度而言,压强是大量气体分子持续不断地撞击容器器壁而形成的单位面积上的压力;温度则是大量气体分子热运动剧烈程度的宏观量度,也可用来描述气体分子的平均平动能.  相似文献   

4.
理想气体状态方程表明了理想气体状态变化的规律,反映了一定质量的理想气体三个状态参量间的变化关系.具体来说,一优质量的理想气体P、V、T三个参量同时变化时,各状态下参量之间的关系为  相似文献   

5.
气体状态变化的三个定律及理想气体状态方程所研究的对象均为一定质量的气体 ,现行高中教材 (试验修订本 )介绍的克拉珀龙方程 ,对解决一些有关变质量气体状态变化问题比较便利 ,但似嫌简捷不够 .本文结合实例 ,说明理想气体状态方程的分态式在分析处理变质量问题 (如打气、灌气、抽气、气体的混合等问题 )的应用 ,分析其独特的解题功能 ,这样有利于培养学生思维的变通性和敏捷性 ,提高学生分析问题和解决问题的能力 .应用克拉珀龙方程 p VT=mMR易推出 :若理想气体在状态变化过程中 ,质量为 m的气体分成不同状态的两部分 m1、m2 ,或由两个…  相似文献   

6.
气体状态变化的三个定律及理想气体状态方程,研究对象均为一定质量的气体,现行高中教材(试验修订本)介绍的克拉珀龙方程,对解决一些有关变质量气态变化问题比较便利,但似嫌不够.本文拟结合实例,说明理想气体状态方程的分态式在分析处理变质量问题:如打气、灌气、抽气、气体的混合等问题的应用,窥视其“一竿子捅到底”的解题功能,也有利于培养思  相似文献   

7.
一定质量m的理想气体的状态,可由压强P、体积V和温度T三个参量来描述,而且这三个参量遵循理想气体状态方程:PV/T=恒量在压强、体积、温度三个量中,知道其中任意两个,就可以确定第三个.因此用两个量就能确定其状态,所以我们可以用P-V图象中的一点(P,V)或P-T图象中的一点(P,T)、或V-T图象中的一点(V,T)来表示理想气体的状态,用其中一条曲线表示理想气体状态变化过程,从而分析和解决气体性质的问题.  相似文献   

8.
运用理想气体状态方程解题,其基本的方法策略,体现为以下三个主要环节. 一、抓住一个对象理想气体状态方程被表述为p1V1/T1=p2V2/T2,它描述的是一定质量的理想气体的状态变化规律,其研究对象的特征是:定对象,定种类,定质量.也即方程等号两边所对应的是质量和种类都不改变的同一气体.这就使得合理  相似文献   

9.
P-V图不仅可表示一定质量理想气体的状态(对应图上一点),同时还可描述气体状态的变化过程(对应图上一条线)。因此,可借助P-V图复习气体三定律、状态方程和气体分子运动论的有关内容。 [思考题一]:试从图1给出的P-V图中比较一定质量理想气体处于A、B、C三个状态时的绝对温度之比。  相似文献   

10.
理想气体状态变化过程图像浓缩了许多气体状态变化的过程 ,简化了许多语言表述 ,使许多物理问题转为数学、图形问题 ,如何应用并解决一些物理问题 ,成为高中物理教学中的难点。1 正确理解理想气体状态变化图像是应用的基础1 1 理想气体的内能就是气体所有分子热运动的动能总和。从宏观上来看 ,理想气体的内能只跟温度有关 ,跟气体的体积、压强无关。理想气体的内能是一个状态量。对一摩尔理想气体 :单原子分子气体内能E =32 RT ,内能变化△E =32 R△T。双原子分子气体内能E =72 RT ,内能变化△E =72 R△T。1 2 理想气体做功只与压…  相似文献   

11.
p_1/(ρ_1T_1)=p_2/(ρ_2T_2)被称为理想气体的密度方程。它描述某种理想气体在两个状态下,气体密度ρ与压强p、温度T之间的关系。这个方程中的压强、温度和密度都是强度量,没有一个是广延量,因此方程成立与否与气体的质量无关,方程不仅适用于某种理想气体定质量状态变化过程,同样也适用于变质量状态变化过程。 理想气体的密度方程与理想气体的状态方程一样,涉及的物理量都较克拉珀龙方程少,在处理涉及气体密度、质量等问题时,使用比较方便。笔者认为,应该  相似文献   

12.
理想气体状态方程PV=MRT/μ,它表示质量为M,摩尔质量为μ的理想气体在任一状态时,它的状态参量之间的关系。具体来说它有两种含义:①说明在任一状态时,理想气体的P、V、T、M四个量之间的关系。②说明一定质量的气体在状态变化过程中任何两个平衡状态的参量之间的关系。也就是说,一定质量的理想气体P、V、T三个参量同时发生变化时,各平衡态下,状态参量之间的关系为:  相似文献   

13.
自从2002年《高中物理教学大纲》调整,把热学部分的“气体实验定律”和“理想气体状态方程”删掉后,气体压强的微观解释就成了该部分的重点内容.从宏观来讲,气体的压强由气体的体积和温度共同决定,这点比较好理解;从微观来讲,在气体压强一定的情况下,气体分子在单位时间内与器壁单位面积碰撞的分子数究竟与气体的体积和温度有什么关系就成了教学的重点和难点.  相似文献   

14.
对变质量气体状态变化问题的教学现状做了分析和反思,从一定质量的理想气体状态方程出发,推导并介绍了变质量气体状态方程及其应用。  相似文献   

15.
对于一定质量(设为n摩尔)的理想气体,我们用气体的体积V、压强P和温度T等物理量来描述其状态,这几个物理量叫做状态参量。对处于一定状态的理想气体,实验表明,参量n、P、V和T之间有一定的关系,描述这一关系的数学式叫做理想气体状态方程。  相似文献   

16.
范德瓦尔斯气体模型仅考虑气体分子间引力的变化。而把斥力全部归结为体积。若同时考虑气体分子间的引力和斥力随分子间距离的变化,可得到一摩尔非理想气体状态方程和内能表达式,它们分别为:  相似文献   

17.
变质量气体状态变化问题,是高中物理学中的一个难点,如何突破难点,掌握解决这类问题的方法是关键.理想气体状态方程及实验三定律研究的对象都是一定质量的理想气体,克拉珀龙方程(试验修订本)对解决一些变质量气体状态变化问题比较便利,但是尚嫌简捷不够.本文结合实例,用"气片"模型,化变质量为定质量,从而求解相关问题.  相似文献   

18.
理想气体状态变化的解题步骤一般是,明确研究对象(是哪一部分气体或哪几部分气体);确定被研究对象的初始状态和终了状态,明确对应这两个状态的状态参量P、V、T(变质量时还要考虑气体的质量);应用理想气体状态方程或气体三定律(变质量时一般用克拉珀龙方程)列方程求解。但是在有些问题中,机械地根据初、终状态参量列方程计算却会出错。下面一个例子是颇有代表性的。  相似文献   

19.
<正>求解理想气体状态变化问题需要先厘清三个状态参量:(1)理想气体的温度T——气体分子热运动的平均动能的标志,它决定了一定量的理想气体的内能;(2)理想气体的体积V——每个分子占据的空间远大于分子本身的大小;(3)理想气体的压强p——大量气体分子作用于容器壁单位面积上的平均力,它由分子的平均动能、气体分子的密集程度所决定。另外,需要牢记一定量某种气体在某一状态时的P、V、T三参量的关系PV=nRT或  相似文献   

20.
由于气态分子的间距数量级在10~(-9)m(10r_0)左右,分子力很微弱,在压强不太大,温度不太低的情况下,实际气体间的分子力可视为零,即把它们看成理想气体.对于—定质量的理想气体,改变分子间的距离即改变气体的体积,分子力不做功,分子势能不变;改变气体的内能只要改变分子的动能,即改变物体的温度.对于—定质量的理想气体,状态发生变化时会引起一系列物理量的变化,要判断这一状态变化能否发生,可以依据一定质量的理想  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号