首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]介绍了第6届IMO试题sum a~2(b c-a)≤3abc ① (其中∑表示循环和)的等价形式 sum a~2/((s-b)(s-c))≤6R/r ②的加强 sum a~2/((s-b)(s-c))≤4/3(4R/r 1) ③ 本文介绍③式的下界估计。 命题 设s、R、r分别为△ABC半周长、外接圆半径、内切圆半径,则有  相似文献   

2.
Gergonne点与Kooi不等式   总被引:1,自引:0,他引:1  
Gergonne点:△ABC的内切圆切BC、CA、AB分别于点D、E、F,则AD、BE、CF交于一点J。此点称为Gergonne点。 若记BC=a,CA=b,AB=c,s=1/2(a b c),则易见J关于△ABC的重心坐标为((s-b)(s-c),(s-a)(s-c),(s-a)(s-b))。 O.Kooi不等式:1969年,O.Kooi证明了  相似文献   

3.
(一)我省今年中考数学试题第八题是这样的:在△ABC中,已经学过△=(1/2)absinC,c~2=a~2+b~2-2abcosC,另外还学过sin~2a+cos~2a=1,试根据上述公式证明△=(s(s-a)(s-b)(s-c))~(1/2)(这里s=(a+b+c)/2)。  相似文献   

4.
在△ABC中,边长a、b、c;角A、B.C;以及半周长s,面积△,内切圆半径γ和外接圆半径R之间有着丰富的内在联系,它们往往以一些等量关系或不等量关系的形式出现。这部分内容是三角和几何教学的一个重要部分。然而,形形式式的练习和问题,往往忽视了这种联系,本文揭示这种内在联系,并努力使它们融会贯通。首先,我们从海伦公式△=(s(s-a)(s-b)(s-c))~(1/2)出发,利用算术平均与几何平均的关系,立即可得以下不等式。例1 △ABC中,  相似文献   

5.
1引言设ΔABC的三边为a、b、c,外接圆半径和内切圆半径分别为R,r,文[1]提出关于Milosevic不等式的加强:a/b+c sin2A/2+b/c+a sin2B/2+c/a+b sin2C/2≥1/2(1-r2/R2).  相似文献   

6.
266.设△ABC的半周长为s。求证:若s,s-a,s-b,s-c成等比数例,则△ABC为直角三角形。证:设已知等比数列的公比为q,则0相似文献   

7.
在计算三角形的面积或利用三角形的面积来计算其它图形的面积时,我们常常运用下列公式:S=(1/2)a·h_a;S=(1/2)absinC;S=(s(s-a)(s-b)(s-c))~(1/2);S=(abc)/4R.其中,a、b、c 是三角形的边,h_a 是边 a 上的高,s=(1/2)(a+b+c),R 是三角形外接圆的半径。然而,在平面几何的证题中,如遇到有关线段(或  相似文献   

8.
关于△ABC三边a、b、c的不等式证明,文已给出了若干证明方法.其中,文建立了代数变换:f(s-a,s-b,s-c)=f(x,y,z);文建立了代数变换:f(ra,rb,rc)=f(x,y,z)(其中半周长s=a+b+c/2;ra,rb,rc分别为△ABC的旁切圆半径).但是,对于一类“轮换对称不等式”,以上方法显得力不从心.本文将文的代数变换:f(s-a,s-b,s-c)=f(x,y,z),改造为代数变换:f(a,b,c)=f(y+z,z+x,x+y),导出了两个漂亮的定理,找到了△ABC三边a、b、c的不等式(包括非完全对称的“轮换对称不等式”)的证明妙法.  相似文献   

9.
△ABC的内切圆、外接圆半径分别为r,R,大家知道有著名的Euler公式:R≥2r. 上述公式证明方法有多种,本文将给出△ABC中内切圆代换下的证明. 为此,我们先给出有关内切圆的一些基本知识点,这些在不等式证明中时是极其有用的. 如图1,设a=x+y,b=y+z,c =z + x,△ABC的内切圆、外接圆半径分别为r,R,面积为S,半周长p=a+b+c/2=x+y+z,由海伦公式知S=√p(p-a)(p-b)(p-c) =√xyz(x+y+z),注意到S=pr=a+b+c/2 r,故r=S/P=√xyz/x+y+z,而S=1/2absinC=abc/4R,故R=abc/4S=(x+y)(y+z)(z+x)/4√xyz(x+y+z),故=R/2r=(x+y)(y+z)(z+x)/8xyz≥8xyz/8xyz=1,故R≥2r.  相似文献   

10.
一个几何命题的证明   总被引:1,自引:0,他引:1  
命题:二角形的外心至三边距离的和等于它的外接圆半径与内切圆半径之和。已知:O为△ABC的外接圆的圆心,OD、OE、OF为由O至BC、CA、BA的距离,R为它的外接圆半径、r为它的内切圆半径。求证:OD+OE+OF=R+r 本题见于几何辞典(日本,长泽龟之助著,薛德烱等译,新亚书店出版)第293页第1425题。原书的证明是这样的:命△ABC的面积为△,则R=abc/4△,r=△/s=△/(1/2)(a+b+c)  相似文献   

11.
本文先给出含双圆半径的几何性质: 定理1:设△ABC的外接圆半径为R,内切圆半径为r,顶点A、B、C到内心的距离分别为a0,b0,c0,则4Rr2=a0b0c0. 证明:因为r=(a0sin)A/2.=(b0sin)B/2=(c0sin)C/2. 所以r3=(a0b0c0sin)A/2(sin)B/2(sin)C/2因为△=1r/2(a+b+c)=Rr(sinA+sinB+sinC)=2R2sinAsinBsinC所以r/2R=sinA·sinB·sinC/sin+sinB+sinC又因为易证sinA+sinB+sinC=  相似文献   

12.
定理设D、E、F分别是△ABC的三边BC、CA、AB上的点,并且AD、BE、CF相交于一点,若记△ABC、△DEF、△AEF、△BDF、△CDE的外接圆半径分别为R、R0、R1、R2和R3,则R≥2(R1R2R3/R0)1/2.等号当且仅当D、E、F分别为BC、CA、AB的中点时成立.证明:如图,在△AEF和△ABC中分  相似文献   

13.
文[1]给出了关于三角形外角平分线构成的三角形的一个性质,将其推广到周界中点三角形中得到.定理如下图,设D、E、F分别为△ABC的边BC、CA、AB上的周界中点,且△ABC与△DEF的三条中线长分别为ma,mb,mc,及ma1,mb1,mc1,则有222ma+mb+mc111≤4(ma2+mb2+mc2),(1)当且仅当△ABC为正三角形时取等号.为行文方便,约定BC=a,CA=b,AB=c,s=(a+b+c)/2,EF=a1,FD=b1,DE=c1且AE=BD=s?c,AF=CD=s?b,BF=CE=s?a,△ABC的面积、外接圆半径、内切圆半径分别为?,R、r.证明如上图,在△AEF中应用余弦定理及cos2()2A s s abc=?,?2=s(s?a)(s?b)(s?c…  相似文献   

14.
文[1]建立了如下一个几何不等式: 设ABC的三边长分别为a、b、c,旁切圆半径分别为ra、rb、rc.则 ∑(a)/(ra)≥23. (1) 文[2]对不等式(1)加强为: ∑(a)/(ra)≥(2(4R+r))/(4R2+4Rr+3r2). (2) 其中R、r分别为ABC的外接圆半径与内切圆半径,∑表示循环和,下同. 本文将(2)加强为: ∑(a)/(ra)≥24-(2r)/(R). (3) 证明:设ABC的半周长为s,由 ra=(sr)/(s-a),rb=(sr)/(s-b),rc=(sr)/(s-c) 和三角恒等式a2+b2+c2=2(s2-4Rr-r2),可知 ∑(a)/(ra)=(1)/(sr)[(a+b+c)s-(a2+b2+c2)] =(2(4R+r))/(s). 由O.kooi不等式 2s2(2R-r)≤R(4R+r)2. 可知(1)/(s)≥(4R-2r)/((4R+r)R). 故(2(4R+r))/(s)≥(24R-2r)/(R) =24-(2r)/(R). 则不等式(3)成立. 下面证明(3)比(2)强. 显然,仅需证 4-(2r)/(R)≥(4R+r)/(4R2+4Rr+3r2) 成立. 将上式平方整理得R≥2r. 由Euler不等式可知,上式成立. 这说明(3)强于(2).  相似文献   

15.
定理设△ABC边为n,6,c,外接圆半径为尺,垂足△DEF的内切圆半径为r,则r=α^2+b^2+c^2-8R^2/4R.  相似文献   

16.
常见的三角形面积公式有S=1/2aha,S=1/2absinC,S=(abc)/(4R),S=(p(p-a)(p-b)(p-c))1/2,S=pr.这里的a,b,c分别为△ABC内角A,B,C的对边,ha为a边上的高,R,r分别为△ABC外接圆、内切圆的半径,p为△ABC周长的一半.在平面直角坐标系中,已知△P1P2P3三  相似文献   

17.
三角形中半角公式的应用在△ABC中,我们有:sinA/2=((s+b)(s-c)/bc)~(1/2),cosA/2=(s(s-a)/bc)~(1/2),…等等。(2s=a+b+c)这一组公式(“半角公式”)的证明不难(略),它们在斜三角形方面的应用较广,举例如下。 [例1] 在△ABC中,a、b、c成等差数列,求证:ctgA/2 ctgC/2=3。  相似文献   

18.
定理设ΔABC的内角A,B,C所对的旁切圆与三边所在直线相切的切点构成的三角形的面积依次为ΔA,ΔB,△C,且记BC=a,CA=b,AB=c,p=1/2(a+b+c),ΔABC的面积、外接圆、内切圆半径分别为△,R,r,则有  相似文献   

19.
设△ABC的外接圆半径与内切圆半径及半周长分别为R,r,s,则有不等式: s4-2(2R2+10Rr-r2)s2+r(4R+r)3≤0, (1) 等号当且仅当△ABC为等腰三角形时成立.  相似文献   

20.
命题 设D、E分别是△ABC的边BC上与顶点B、C不重合的任意两点 ,△ABD、△ACE、△ABE、△ACD、△ADE的内切圆半径分别记作r1、r2 、r3、r4 、r5.则图 1r1r2=r3-r5r4 -r5.引理[1]  已知△ABC ,边BC上的高为h ,N为边BC上一点 ,△ABN与△ANC的内切圆半径分别为r1、r2 .则△ABC的内切圆半径r满足r=r1+r2 - 2r1r2h .命题证明 :如图 1 ,不妨设△ABC的内切圆半径为r,边BC上的高为h ,则由引理可得r=r1+r4 - 2r1r4 h ,①r=r2 +r3- 2r2 r3h ,②r3=r1+r5- 2r1r5h ,③r4 =r2 +r5- 2r2 r5h .④把④代入①、③代入② ,化简整理得2r1r4…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号