首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Curricular changes continue at United States medical schools and directors of gross anatomy, microscopic anatomy, neuroscience/neuroanatomy, and embryology courses continue to adjust and modify their offerings. Developing and supplying data related to current trends in anatomical sciences education is important if informed decisions are going to be made in a time of curricular and course revision. Thus, a survey was sent to course directors during the 2012–2013 academic years to gather information on total course hours, lecture and laboratory hours, the type of laboratory experiences, testing and competency evaluation, and the type of curricular approach used at their institution. The data gathered were compared to information obtained from previous surveys and conclusions reached were that only small or no change was observed in total course, lecture and laboratory hours in all four courses; more gross anatomy courses were part of an integrated curriculum since the previous survey; virtual microscopy with and without microscopes was the primary laboratory activity in microscopic anatomy courses; and neuroscience/neuroanatomy and embryology courses were unchanged. Anat Sci Educ 7: 321–325. © 2014 American Association of Anatomists.  相似文献   

2.
At most institutions, education in the anatomical sciences has undergone several changes over the last decade. To identify the changes that have occurred in gross anatomy, microscopic anatomy, neuroscience/neuroanatomy, and embryology courses, directors of these courses were asked to respond to a survey with questions pertaining to total course hours, hours of lecture, and hours of laboratory, whether the course was part of an integrated program or existed as a stand‐alone course, and what type of laboratory experience occurred in the course. These data were compared to data obtained from a similar survey in 2002. Comparison between the data sets suggests several key points some of which include: decreased total hours in gross anatomy and neuroscience/neuroanatomy courses, increased use of virtual microscopy in microscopic anatomy courses, and decreased laboratory hours in embryology courses. Anat Sci Educ 2: 253–259, 2009. © 2009 American Association of Anatomists.  相似文献   

3.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

4.
Anatomical sciences curricula have been under constant reform over the years, with many countries having to reduce course hours while trying to preserve laboratory time. In Mexico, schools have historically been autonomous and unregulated, and data regarding structure and methods are still lacking. A national survey was sent by the Mexican Society of Anatomy to 110 anatomical sciences educators. The questionnaire consisted of 50 items (open and multiple choice) for gross anatomy, microscopic anatomy, neuroanatomy, and embryology courses in medical schools across Mexico. A clinical approach was the most common course approach in all disciplines. Contact course hours and laboratory hours were higher in Mexican anatomy education compared to other countries, with the highest reported contact hours for embryology (133.4 ± 44.1) and histology (125 ± 33.2). There were similar contact hours to other countries for gross anatomy (228.5 ± 60.5). Neuroanatomy course hours (43.9 ± 13.1) were less than reported by the United States and similar to Saudi Arabia and higher than the United Kingdom. Dissection and microscopy with histological slides predominate as the most common laboratory activities. Traditional methods prevail in most of the courses in Mexico and only a few educators have implemented innovative and technological tools. Implementation of new methods, approaches, and curricular changes are needed to enhance anatomical sciences education in Mexico.  相似文献   

5.
Anatomical education in the United Kingdom (UK) and Ireland has long been under scrutiny, especially since the reforms triggered in 1993 by the General Medical Council's “Tomorrow's Doctors.” The aim of the current study was to investigate the state of medical student anatomy education in the UK and Ireland in 2019. In all, 39 medical schools completed the survey (100% response rate) and trained 10,093 medical students per year cohort. The teachers comprised 760 individuals, of these 143 were employed on full-time teaching contracts and 103 were employed on education and research contracts. Since a previous survey in 1999, the number of part-time staff has increased by 300%, including a significant increase in the number of anatomy demonstrators. In 2019, anatomy was predominantly taught to medical students in either a system-based or hybrid curriculum. In all, 34 medical schools (87%) used human cadavers to teach anatomy, with a total of 1,363 donors being used per annum. Gross anatomy teaching was integrated with medical imaging in 95% of medical schools, embryology in 81%, living anatomy in 78%, neuroanatomy in 73%, and histology in 68.3%. Throughout their five years of study, medical students are allocated on average 85 h of taught time for gross anatomy, 24 h for neuroanatomy, 24 h for histology, 11 h for living anatomy, and 10 for embryology. In the past 20 years, there has been an average loss of 39 h dedicated to gross anatomy teaching and a reduction in time dedicated to all other anatomy sub-disciplines.  相似文献   

6.
Human anatomy knowledge is a core requirement for all health care clinicians. There is a paucity of information relating to anatomy content and delivery in Australian chiropractic programs. The aim of this study was to describe anatomy teaching in Australian chiropractic programs, utilizing a survey which was distributed to all four programs, requesting information on: anatomy program structure, delivery methods, assessment, teaching resources, and academic staff profile at their institution. The survey was undertaken in 2016 and documented practices in that academic year. All four institutions responded. There was a reported difference in the teaching hours, content, delivery and assessment of anatomy utilized in Australian chiropractic programs. Anatomy was compulsory at all four institutions with the mean total of 214 (SD ± 100.2) teaching hours. Teaching was undertaken by permanent ongoing (30%) and sessional academic staff, and student to teacher ratio varied from 15:1 to 12:1. A variety of teaching resources were utilized, including human tissue access, either as prosected cadavers or plastinated body parts. The results of this survey confirm that anatomy has an established place in chiropractic education programs in Australia and while curricular variations exist, all programs had similar course design, delivery, and assessment methods. This study confirmed the provision of a strong foundation in topographical anatomy and neuroanatomy, while other anatomical sciences, such as histology and embryology were not consistently delivered. Formalization of a core anatomy curriculum together with competency standards is needed to assist program evaluation and development, and for accreditation purposes.  相似文献   

7.
The most effective method to teach gross anatomy is largely unknown. This study examined two teaching methods utilized in a physical therapy and occupational therapy gross anatomy course, (1) alternating dissection with peer teaching every other laboratory session and (2) faculty demonstrations during laboratory sessions. Student (n = 57) subgroup (A or B) academic performance was determined using written, laboratory practical, and palpation practical examinations. Subgroup A performed significantly better on laboratory practical examination questions pertaining to dissected, in comparison to peer-taught structures (67.1% vs. 60.2%, P = 0.008). Subgroup B performed significantly better on laboratory practical examination questions pertaining to peer-taught, in comparison to dissected structures (64.1% vs. 57.9%, = 0.001). When Subgroup A was compared to Subgroup B, there were no statistically significant differences on laboratory practical examination question types, whether the subgroup learned the structure through dissection or peer teaching. Based on within and between subgroup comparisons, faculty demonstrations had no effect on written, laboratory practical, or palpation practical examination scores. Although limited, data suggest that the student roles when alternating dissection with peer teaching every other laboratory session appear to be equally effective for learning gross anatomy. The benefits of this method include decreased student/faculty ratio in laboratory sessions and increased time for independent study. Faculty demonstrations during laboratory sessions do not seem to improve student academic performance.  相似文献   

8.
9.
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in‐class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom‐made, three‐dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in‐class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011–2013; n = 242) and three years after (2014–2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi‐cumulative laboratory examination, scores were significantly higher in the post‐flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection‐based course. Anat Sci Educ 11: 385–396. © 2017 American Association of Anatomists.  相似文献   

10.
Students learn and process information in many different ways. Learning styles are useful as they allow instructors to learn more about students, as well as aid in the development and application of useful teaching approaches and techniques. At the undergraduate level there is a noticeable lack of research on learning style preferences of students enrolled in gross anatomy courses. The Index of Learning Styles (ILS) questionnaire was administered to students enrolled in a large enrollment undergraduate gross anatomy course with laboratory to determine their preferred learning styles. The predominant preferred learning styles of the students (n = 505) enrolled in the gross anatomy course were active (54.9%), sensing (85.1%), visual (81.2%), and sequential (74.4%). Preferred learning styles profiles of particular majors enrolled in the course were also constructed; analyses showed minor variation in the active/reflective dimension. An understanding of students' preferred learning styles can guide course design but it should not be implemented in isolation. It can be strengthened (or weakened) by concurrent use of other tools (e.g., flipped classroom course design). Based on the preferred learning styles of the majority of undergraduate students in this particular gross anatomy course, course activities can be hands on (i.e., active), grounded in concrete information (i.e., sensing), utilize visual representation such as images, figures, models, etc. (i.e., visual), and move in small incremental steps that build on each topic (i.e., sequential). Anat Sci Educ 11: 358–365. © 2017 American Association of Anatomists.  相似文献   

11.
The total number of anatomy teaching hours has declined in medical courses worldwide. Conversely, face‐to‐face teaching in undergraduate neuroanatomy at Macquarie University increased by 50% in 2011. Our aim was to investigate whether this influenced student performance and overall satisfaction with the course. One hundred eighty‐one students consented to participate in this study. A questionnaire was administered to rate the course, and final grades from the old and new unit cohorts were compared. The old and new unit cohorts did not differ in their final grades (P = 0.249). However, the new unit cohort rated their knowledge of the material higher compared to the old unit cohort (P = 0.013), and reported higher levels of satisfaction with the course (P < 0.001). In an era in which teaching time for anatomy has been reduced at tertiary institutions, and there is much lamenting of the effect this will have, there is a paucity of literature on whether the decrease really influences neuroanatomical knowledge. This is the first study, to the best of our knowledge, to show that an increase in total face‐to‐face teaching hours does not improve student grades, but does increase student satisfaction with the course. Anat Sci Educ 6: 239–245. © 2012 American Association of Anatomists.  相似文献   

12.
Anatomy instruction has evolved over the past two decades as many medical schools have undergone various types of curricular reform. To provide empirical evidence about whether or not curricular changes impact the acquisition and retention of anatomy knowledge, this study investigated the effect of variation in gross anatomy course hours, curricular approach (stand‐alone versus integrated), and laboratory experience (dissection versus dissection and prosection) on USMLE Steps 1 and 2 Clinical Knowledge (CK) scores. Gross anatomy course directors at 54 United States schools provided information about their gross anatomy courses via an online survey (response rate of 42%). Survey responses were matched with USMLE scores for 6,411 examinees entering LCME‐accredited schools in 2007 and taking Step 1 for the first time in 2009. Regression analyses were conducted to examine relationships between gross anatomy instructional characteristics and USMLE performance. Step 1 total scores, Step 1 gross anatomy sub‐scores, and Step 2 CK scores were unrelated to instructional hours, controlling for MCAT scores. Examinees from schools with integrated curricula scored slightly lower on Steps 1 and 2 CK than those from stand‐alone courses (effect sizes of 2.1 and 1.9 on score scales with SDs of 22 and 20, respectively). Examinees with dissection and prosection experience performed slightly better on Step 2 CK than examinees in courses with dissection only laboratories (effect size of 1.2). Results suggest variation in course hours is unrelated to performance on Steps 1 and 2 CK. Although differences were observed in relation to curricular approach and laboratory experience, effect sizes were small. Anat Sci Educ 6: 3–10. © 2012 American Association of Anatomists.  相似文献   

13.
Anatomy is shifting toward a greater focus on adopting digital delivery. To advance digital and authentic learning in anatomy, a flipped classroom model integrating multimodal digital resources and a multimedia group assignment was designed and implemented for first-year neuroanatomy and third-year regional anatomy curricula. A five-point Likert scale learning and teaching survey was conducted for a total of 145 undergraduate health science students to evaluate students' perception of the flipped classroom model and digital resources. This study revealed that over two-thirds of participants strongly agreed or agreed that the flipped classroom model helped their independent learning and understanding of difficult anatomy concepts. The response showed students consistently enjoyed their experience of using multimodal digital anatomy resources. Both first-year (75%) and third-year (88%) students strongly agreed or agreed that digital tools are very valuable and interactive for studying anatomy. Most students strongly agreed or agreed that digital anatomy tools increased their learning experience (~80%) and confidence (> 70%). The third-year students rated the value of digital anatomy tools significantly higher than the first-year students (p = 0.0038). A taxonomy-based assessment strategy revealed that the third-year students, but not the first-year, demonstrated improved performance in assessments relating to clinical application (p = 0.045). In summary, a flipped anatomy classroom integrating multimodal digital approaches exerted positive impact upon learning experience of both junior and senior students, the latter of whom demonstrated improved learning performance. This study extends the pedagogy innovation of flipped classroom teaching, which will advance future anatomy curriculum development, pertinent to post-pandemic education.  相似文献   

14.
This study describes a new teaching model for ultrasound (US) training, and evaluates its effect on medical student attitudes toward US. First year medical students participated in hands‐on US during human gross anatomy (2014 N = 183; 2015 N = 182). The sessions were facilitated by clinicians alone in 2014, and by anatomy teaching assistant (TA)‐clinician pairs in 2015. Both cohorts completed course evaluations which included five US‐related items on a four‐point scale; cohort responses were compared using Mann‐Whitney U tests with significance threshold set at 0.05. The 2015 survey also evaluated the TAs (three items, five‐point scale). With the adoption of the TA‐clinician teaching model, student ratings increased significantly for four out of five US‐items: “US advanced my ability to learn anatomy” increased from 2.91 ± 0.77 to 3.35 ± 0.68 (P < 0.0001), “Incorporating US increased my interest in anatomy” from 3.05 ± 0.84 to 3.50 ± 0.71 (P < 0.0001), “US is relevant to my current educational needs” from 3.36 ± 0.63 to 3.54 ± 0.53 (P = 0.015), and “US training should start in Phase I” from 3.36 ± 0.71 to 3.56 ± 0.59 (P = 0.010). Moreover, more than 84% of students reported that TAs enhanced their understanding of anatomy (mean 4.18 ± 0.86), were a valuable part of US training (mean 4.23 ± 0.89), and deemed the TAs proficient in US (mean 4.24 ± 0.86). By using an anatomy TA‐clinician teaching team, this study demonstrated significant improvements in student perceptions of the impact of US on anatomy education and the relevancy of US training to the early stages of medical education. Anat Sci Educ 11: 175–184. © 2017 American Association of Anatomists.  相似文献   

15.
Many medical schools have undergone curricular reform recently. With these reforms, time spent teaching anatomy has been reduced, and there has been a general shift to a pass/fail grading system. At Indiana University School of Medicine (IUSM), a new curriculum was implemented in fall 2016. The year-long human gross anatomy course taught in 2015 was condensed into an integrated, semester-long course starting in 2016. Additionally, the grading scale shifted to pass/fail. This study examined first-year medical student performance on anatomy practical laboratory examinations—specifically, among lower-order (pure identification) questions and higher-order (function, innervation) questions. Participants included medical students from a pre-curricular reform cohort (year 2015, 34 students) and two post-curricular reform cohorts (years 2016, 30 students and 2017, 33 students). A Kruskal–Wallis ANOVA test was used to determine differences of these questions among the three cohorts. Additionally, 40 of the same lower-order questions that were asked on gross anatomy laboratory examinations from medical student cohort year 2015 and year 2016 were further analyzed using an independent samples t-test. Results demonstrated that the pre-curricular reform cohort scored significantly higher on both lower-order (median = 81, p < 0.001) and higher-order questions (median = 82.5, p < 0.05) than both post-curricular reform cohorts. Additionally, when reviewing the selected 40 similar questions, it was found that the pre-curricular reform cohort averaged significantly higher (82.1 ± 16.1) than the post-curricular reform cohort from 2016 (69.3 ± 21.8, p = 0.004). This study provides evidence about the impact of curricular reform on medical student anatomical knowledge.  相似文献   

16.
Many pre‐health professional programs require completion of an undergraduate anatomy course with a laboratory component, yet grades in these courses are often low. Many students perceive anatomy as a more challenging subject than other coursework, and the resulting anxiety surrounding this perception may be a significant contributor to poor performance. Well‐planned and deliberate guidance from instructors, as well as thoughtful course design, may be necessary to assist students in finding the best approach to studying for anatomy. This article assesses which study habits are associated with course success and whether course design influences study habits. Surveys (n = 1,274) were administered to students enrolled in three undergraduate human anatomy laboratory courses with varying levels of cooperative learning and structured guidance. The surveys collected information on potential predictors of performance, including student demographics, educational background, self‐assessment ability, and study methods (e.g., flashcards, textbooks, diagrams). Compared to low performers, high performers perceive studying in laboratory, asking the instructor questions, quizzing alone, and quizzing others as more effective for learning. Additionally, students co‐enrolled in a flipped, active lecture anatomy course achieve higher grades and find active learning activities (e.g., quizzing alone and in groups) more helpful for their learning in the laboratory. These results strengthen previous research suggesting that student performance is more greatly enhanced by an active classroom environment that practices successful study strategies rather than one that simply encourages students to employ such strategies inside and outside the classroom. Anat Sci Educ 11: 496–509. © 2018 American Association of Anatomists.  相似文献   

17.
Gross anatomy dissection in contemporary medical education must balance the traditional value of learning from the cadaver with the possibilities created by the use of digital tools as supplemental resources that personalize and deepen the student learning experience. This study broadly examined the design, implementation, and use of AnatomyShare, a novel iPad application employing learner-generated content that allows students to securely share annotated images of their dissections with each other and take faculty-generated image-based quizzes during their first-year medical school gross anatomy course. Almost all students enrolled in the course used the application (N = 176; 91% use based on analytics). Seventy-five students responded to a survey asking how and when they used the application, along with their perceptions of its usefulness and contribution to learning. More students reported using the application outside of laboratory (97.3%) than during laboratory (85.3%), despite only in-laboratory use being required. Taking quizzes using the “Exam” feature was the highest rated use of AnatomyShare, and students cited that the application exposed them to anatomical variation and motivated them to correctly identify structures during dissection. While steps need to be taken to combat low-quality learner-generated content and to enhance meaningful student interaction and collaboration, AnatomyShare was a feasible and highly rated supplement to dissection that provided valuable assessment opportunities for students. Future research will examine the impact of use on course grades and engagement in gross anatomy dissection.  相似文献   

18.
Authors report here a survey of medical student feedback on the effectiveness of two different anatomy curricula at Christian Medical College, Vellore, India. Undergraduate medical students seeking the Bachelor in Medicine and Bachelor in Surgery (M.B.B.S.) degrees were divided into two groups by the duration of their respective anatomy curriculum. Group 1 students had completed a longer, 18‐month curriculum whereas Group 2 counterparts followed a shorter, 12‐month curriculum. Students' responses to a questionnaire were studied. Analysis of feedback from Groups 1 and 2 contrasted the effectiveness of the two anatomy curricula. The coverage of gross anatomy was rated adequate or more than adequate by 98% of Group 1 and 91% of Group 2. A desire for greater emphasis on gross anatomy teaching was expressed by 24% of Group 1 and 50% of Group 2 (P = 0.000). Two‐thirds of all students felt that the one‐year program was not adequate, and 90% of Group 1 and 74% of Group 2 felt that clinically oriented anatomy teaching required more emphasis. Dissection was helpful or very helpful for 94% of Group 1 and 88% of Group 2. This study suggests that a better understanding of gross anatomy was gained from a course of longer duration (18 months with 915 contact hr vs. 12 months with 671 contact hr). Students who completed the longer anatomy course had greater appreciation of the need for clinically oriented anatomy teaching and dissection. Anat Sci Educ 2:179–183, 2009. © 2009 American Association of Anatomists.  相似文献   

19.
Blended learning has become increasingly common in higher education. Recent findings suggest that blended learning achieves better student outcomes than traditional face‐to‐face teaching in gross anatomy courses. While face‐to‐face content is perceived as important to learning there is less evidence for the significance of online content in improving student outcomes. Students enrolled in a second‐year anatomy course from the physiotherapy (PT), exercise physiology (EP), and exercise science (ES) programs across two campuses were included (n = 500). A structural equation model was used to evaluate the relationship of prior student ability (represented by grade in prerequisite anatomy course) and final course grade and whether the relationship was mediated by program, campus or engagement with the online elements of the learning management system (LMS; proportion of documents and video segments viewed and number of interactions with discussion forums). PT students obtained higher grades and were more likely to engage with online course materials than EP and ES students. Prerequisite grade made a direct contribution to course final grade (P < 0.001) but was also mediated by engagement with LMS videos and discussion forums (P < 0.001). Student learning outcomes in a blended anatomy course can be predicted the by level of engagement with online content. Anat Sci Educ 11: 471–477. © 2017 American Association of Anatomists.  相似文献   

20.
A novel three-dimensional tool for teaching human neuroanatomy   总被引:1,自引:0,他引:1  
Three‐dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross‐sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first‐year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color‐coded physical models of the periventricular structures, while the control group re‐examined 2D brain cross‐sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F1,85= 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号