首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

2.
从所周知,欧拉不等式2r≤R2(3)~(1/3)r≤3~(1/3)R。(1765)我们可加细到2(3)~(1/3)r≤(abc)1/3≤1/3(a b c)≤3~(1/3)R;(1)2(3)~(1/3)r≤(abc)~(1/3)≤{P integral from n=1 to ∞( 8)[(a x)(b x)(c x)]~-(P 1)3dx}-1/P≤1/3(a b c)≤3~(1/3)R;(2)2(3)~(1/3)≤(abc)~(1/3){P integral from n=1 to ∞( 8)[(a x)(b x)(c x)]~-(P 1)/3dx}~-(1/P)≤{Pintegral from n=1 to ∞( 8)λ~(-1)[(ι λ)(a x))~(1/3)(ι λ(b x))~(1/3)(ι λ(c x))~(1/3)-ι]~(-P-1)dx}~(-1/P)≤1/3(a b c)≤3~(1/3)R。(3)  相似文献   

3.
在不等式证明中一个常用的绝对值不等式|a b|≤|a| |b|可推得如上两个结论: (Ⅰ)|a b|<|a| |b|ab<0, (Ⅱ)|a b|=|a| |b|ab≥0。这两个结论对解一些方程和不等式有事半功倍之效。例1 解方程 (x (2x-1)~(1/2))~(1/2) (x-(2x-1)~(1/2))~(1/2)=2~(1/2) (第一届国际中学生数学竞赛题) 解:将原方程两边乘以2~(1/2)得:(2x-1 2 (2x-1)~(1/2))~(1/2) 1 (2x-1-2 (2x-1)~(1/2))~(1/2) 1=2令y=(2x-1)~(1/2)(y≥0),则原方程可变为: ((y 1)~2)~(1/2) ((y-1)~2)~(1/2)=2即|y 1| |1-y|=2∵(y 1) (1-y)=2,根据(Ⅱ)得:(y 1)(1-y)≥0,∴-1≤y≤1。又y≥0,∴0≤y≤1即0≤(2x-1)~(1/2)≤1解之得1/2≤x≤1。  相似文献   

4.
<正> 代数一、填空: 1、计算:[(-2)~2]~(-(1/2))+2°/(2~(1/2)) -1/(|1-2~(1/2)|)=-(2~(1/2)+1)/2 2、把x~5y-x~3y+2x~2y-xy分解因式为xy(x~2+x-1)(x~2-x+1) 3、已知((2a+b~(-1))~2+|2-a~2|)/(a+2~(1/2))=0,则(a-b)/(a+b)=(3/5) 4、计算1/2lg25+lg2-lg0.1~(1/2)-log_29×log_32=-(1/2) 5、设A={x:|x|<2}, B={x:x~2-4x+3≤0},则A∩B=1≤x<2;A∪B=-23的解集为{x:x>4}∪{x:0相似文献   

5.
不等式的证明是国内外数学竞赛中的热点问题 ,尽管这些不等式的形式各异 ,但很多不等式的证明却可以用两个基本不等式而巧妙地得到解决 .本文所述的基本不等式为 :a + b≥ 2 ab(a,b∈ R+ )及a1+ a2 +… + ann ≥ n a1a2 … an(ai ∈ R+ ) .下面看一些具体例子 .1 用 a + b≥ 2 ab(a,b∈ R+ )证明竞赛中不等式  例 1 设 x1,x2 ,x3,… ,xn均为正数 ,求证 :x21x2+ x22x3+ x23x4+… + x2n- 1xn+ x2nx1≥ x1+ x2+… + xn.(1 984年全国高中数学联赛题 )证明 :由基本不等式 a + b≥ 2 ab(a,b∈R+ )得x22x1+ x1≥ 2 x2 ,x23x2+ x2 ≥ 2 x3,… …  相似文献   

6.
命题函数y=a/cosx b/sinx,(a、b∈R~ ),x∈(0,1/2π)的最小值为(((a~2)~(1/3) (b~2~(1/3))~3)~(1/2) 证明∵a~(1/3)cosx b~(1/3)sinx ≤ ((a~2)~(1/3) (b~2)~(1/3))~(1/2)(当且仅当x=arc tg(b/a)~(1/3)时等号成立), ∴((a~2)~(1/3) (b~2)~(1/3))~3)~(1/2)y≥a~(1/3)cosx b~3sinx)·(a/cosx b/sinx)≥(a~(1/6)(cosx)~(1/2)(a/cosx)~(1/2) b~(1/6)(sinx)~(1/2)·((b/sinx)~(1/2))~2=((a~2)~(1/3) (b~2)~(1/3))~2(当且仅当x=arc tg(b/a)~(1/3)时等号成立),即  相似文献   

7.
例.已知0相似文献   

8.
问题不等式21≤ax2x+23+x1+b≤121对一切x∈R恒成立,求a、b的值.这是许多数学资料都选为范例或典型练习的一道题,主要解法如下:设y=f(x)=ax2+3x+bx2+1,则21≤y≤121,即函数y=f(x)的值域是[21,121].将y=f(x)变形整理得:(y-a)x2-3x+(y-b)=0,由于原不等式对任意x∈R恒成立,则这个关于x的方程必有实根,Δ≥0,即9-4(y-a)(y-b)≥0,亦即4y2-4(a+b)y+(4ab-9)≤0(※),这个不等式的解为:12≤y≤121,则y1=21,y2=121是方程(※)的两个根,则由韦达定理,得a+b=64ab-94=141ba==15,或ba==15.,这个解法是错误的,举一个反例:取a=b=3,则y=f(x)=3x2x+23+x1+3=3+3…  相似文献   

9.
一、连续使用例1 已知a/x+b/y=1,求x+y的最小值。(x、y、a、b均正数) 错解∵1=a/x+b/y≥2((ab/xy)~(1/2)) ∴(xy)~(1/2)≥2((ab)~(1/2)) ∴(x+y)≥2((xy)~(1/2))≥4((ab)~(1/2)) ∴x+y的最小值为4((ab)~(1/2)) 批注第一个“≥”中等号成立的条件为x=y,第二个“≥”中等号成立的条件为a/x=b/y,两者只有在a=b时才是相容的,而原题未给出这个条件。正确的解法为:  相似文献   

10.
在历年的全国高中数学联赛中 ,考查不等式的问题已屡见不鲜 ,尤其是利用构造不等式解决与最值有关的问题一直是近几年的考查热点 .笔者在多年的竞赛辅导中发现 ,全国高中数学联赛中的不等式问题有以下几种常见类型 .1 基本不等式法例 1 设 n为正自然数 ,a,b为正实数 ,且满足 a+ b=2 ,则 11+ an+ 11+ bn的最小值是 .(1990年全国高中数学联赛题 )解 ∵ a,b>0 ,∴ ab≤ (a+ b2 ) 2 =1,anbn≤ 1.故11+ an+ 11+ bn=1+ an+ bn+ 11+ an+ bn+ anbn≥ 1,当 a=b=1时上式等号成立 ,故最小值是 1.例 2 设 a=lgz+ lg[x(yz) -1+ 1],b=lgx-1+lg(xyz+ 1)…  相似文献   

11.
1.证明,八个相邻正整数乘积的四次方根必非整数,而它的整数部分是 x~2+7x+6,这里 x 是这些相邻整数的起始者.2.设 k 和 l 为给定的实数,对任意两个实数 a,b,定义运算 a_ob=ab+k(a+b)+l.试问这种运算满足结合律(a·b)·c=a·(b·c)的充要条件是什么?3.设 o<λ_1≤λ_2≤…≤λ_n,a_i≥0(i=1,2,…,n).证明不等式sum from i=1 to n λ_ja_i sum from i=1 to n a_i/λ_i≤1/4((λ_1/λ_n)~(1/2)+(λ_n/λ_1)~(1/2))~2(sum from i=i to n a_i)~2.4.作一凸闭曲线,它并非圆,但它的周长等于πD,这里 D 是它的直径,即它所围成的闭区域内两点间的最大距离.  相似文献   

12.
利用增量代换来解答和处理问题的方法叫做增量代换法。增量代换法是中学教学中的一种重要方法,在解决众多的数学问题中表现出奇妙的作用。一、解方程例1 解方程 (2x~2-3x+7)~(1/2)-(2x~2-3x+2)~(1/2)=1。解;由此方程的特征,可设 (2x~2-3x+7)~(1/2)=1+a, (1)则(2x~2-3x+2)~(1/2)=a(a≥0)。 (2)(1)~2-(2)~2得a=2。∴ (2x~2-3x+2)~(1/2)=2。解得 x_1=2,x_2=-1/2。经检验知,均为原方程的根。二、证不等式例2 设a,b,m∈P~+,且aa/b。证明:由已知不妨设b=a+a(a>0),则  相似文献   

13.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

14.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

15.
(2021奥地利数学奥林匹克不等式)已知a,b,c∈R+,a+b+c=1,求证:a/2a+1+b/3b+1+c/6c+1≤1/2(1).本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.1.不等式(1)的证法分析1:不等式(1)的左端每一项的结构相同,但遗憾的是分母的系数不等,注意到每一项的特点,因此可通过证明局部不等式,再叠加.  相似文献   

16.
题目 (2017年高考全国Ⅱ卷文科数学第23(Ⅱ)题)已知a>0,b>0,a3 +b3=2.证明:a+b≤2. 证法1不等式的变形. 因为a>0,b>0,a3 +b3=2, 所以a+b>0,且(a-b)2≥0. 从而(a+b)(a-b)2≥0,即有 a2b+ab2≤a3 +b3=2. 不等式两边同乘以3得 3a2b+3ab2≤6.不等式两边同加a3+b3得 a3 +b3 +3a2b+3ab2≤8,即 (a+b)3≤8,所以a+b≤2. 证法2反证法.  相似文献   

17.
对于不等式的证明 ,课本着重介绍了比较法、综合法、分析法 .其实 ,构造二次函数f(x) =ax2 +bx +c(a>0 ) ,利用f(x) ≥ 0恒成立的充要条件Δ≤ 0和 f(x) >0恒成立的充要条件Δ<0来证明 ,也是一种行之有效的方法 .下面以新教材第二册 (上 )课本中的几个习题为例加以说明 .一、若 f(x) =ax2 +bx+c≥ 0 (a>0 ) ,则Δ =b2 -4ac≤ 0例 1 求证 :(ac +bd) 2 ≤ (a2 +b2 ) (c2 +d2 ) .证明 构造二次函数 f(x) =(a2 +b2 )x2 +2 (ac+bd)x +(c2 +d2 ) .当a ,b全为零时 ,不等式显然成立 .设a ,b不全为零 .∵a2 +b2 >0且 f(x) =(ax+c) 2 +(bx+d) 2 ≥ 0…  相似文献   

18.
利用“等号成立条件”证明一类具有轮换对称式的不等式,会给人带来一种“出奇制胜”的美的感受. 例1 若a、b>0,且a+b=1,求证: (2a+1)~(1/2)+(2b+1)~(1/2)≤2 2~(1/2). 分析;显然,当a=b=1/2时,上述不等式等号成立,而此时有2a+1=2b+1=2. 证明:∵ a、b>0, ∴ (2a+1)2~(1/2)≤(2a+1)+2/2=2a+3/2,①  相似文献   

19.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

20.
高中《数学》(试验修订本·必修)第二册(上)第11页习题6.2第1题是:求证:(a2+b)2≤a22+b2.将上述不等式变形可得a2+b2≥(a+2b)2.(*)不等式(*)可利用均值不等式直接证明,也可借助恒等式2(a2+b2)=(a+b)2+(a-b)2及(a-b)2≥0证明.不等式(*)有着广泛的使用价值,本文略举数例加以说明.一、证明不等式【例1】设c是直角三角形的斜边,a、b是两条直角边,求证:a+b≤2c.证明:由题设得a2+b2=c2,由不等式(*)得c2=a2+b2≥(a+2b)2,即(a+b)2≤2c2,亦即a+b≤2c.【例2】己知a、b∈R+,且a+b=1,求证:a+21+b+21≤2.证明:由不等式(*)及已知有2=(a+21)+(b+21)≥(a+21…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号