首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《代数》第三册上有这样一道题:解方程x+1/x=c+1/c,易解方程的根为:x1=c,x2=1/c,若仔细观察不难发现,方程的左边含x的两项互为倒数,右边的常数也分为互为倒数的两项.据此特点称这个方程为倒数方程.  相似文献   

2.
一、巧用倒数关系 例1 解方程:(2x+10)/x+x/(2x+10)=145/12。 分析 观察方程,左边两个分式互为倒数,右边145/12=12+1/12,12与1/12也互为倒数。由此特点可巧解方程。 解 原方程变形为(2x+10)/x+x/(2x+10)=12+1/12。∴(2x+10)/x=12,或(2x+10)/x=1/12。 解得x_1=1,x_2=-120/23。  相似文献   

3.
《义教本》在学习分式方程内容时有这样 一道例题:解关于x的方程:x+1/x=c+1/c,得 其解为x1=c,x2=1/c仔细观察、比较,此方程 很有特点,方程的左边是未知数与其倒数的和, 右边的形式与左边的形式完全相同,只是把未 知数换成了某个常数,而其解有两个,是这个常 数和它的倒数.这个结论简单易记,而且还可 以加以推广并应用. 例1 (2004年福建莆田的中考题):阅读 《义教本》在学习分式方程内容时有这样 一道例题:解关于x的方程:x+1/x=c+1/c,得 其解为x1=c,x2=1/c仔细观察、比较,此方程 很有特点,方程的左边是未知数与其倒数的和, 右边的形式与左边的形式完全相同,只是把未 知数换成了某个常数,而其解有两个,是这个常 数和它的倒数.这个结论简单易记,而且还可 以加以推广并应用. 例1 (2004年福建莆田的中考题):阅读  相似文献   

4.
题目 解方程:x (1/x)=c (1/c).(c≠0) (1) 这是一种具有倒数关系的方程. 按照解分式方程的一般步骤,最后解得此方程的根为x_1=c,x_2=1/c.其实,这个方程左、右两边分别是一对互为倒数的代数式之和,经观察可直接得到结果x=c或x=1/c.  相似文献   

5.
现行中学教学教材《代数》中有一种特殊的一元高次方程,它们就是形如:axn bxn-1 cxn-2 … cx2 bx a=0(a≠0)的方程,把它叫做倒数方程,其特征是距首末两项等远的项的系数(含常数项)。这种方程具有以下性质:(1)此类方程没有零根,即x≠0;(2)如果是倒数方程的根,则x1n是这个方程的根;(3)若方程是奇次幂(就是说最高次项),必须有x=-1的根。也就是说,当次数n为偶数时,方程左边的项数是奇数(请看下面讲解的例1);当次数n为奇数时,则方程左边的项数是偶数,而首尾等距离的项在x=-1时,恰好是互为相反数,所以,这时所有项的和是0。故x=-1是方程的根。(例1)解方程:3x4-325x3 31x2-325x 3=0解:把原方程距首末两端(项)等距离的项结合,得(3x4 3)(-325x3-325x) 31x2=0这时,在方程两边都除以x2,得3(x2 1x2)-325(x 1x) 31=0设x 1x=y,则x2 x12=y2-2,从而方程变形为:3(y2-2)-325y 31=0即6y2-35y 50=0解之,y=52,或y=130由此解得,x=2,21,3,31说明:从这个例子可以看出,...  相似文献   

6.
初中代数第三册P_(126)练习中有这样一题:解方程x 1/x=c 1/c。解:去分母,整理得x~2-(c 1/c)x 1=0,解之得x_1=c,x_2=1/c。经检验,x_1=c,x_2=1/c均是原方程的根。由此得,形如x 1/x=c 1/c的两根互为倒数,且x_1=c,x_2=  相似文献   

7.
我们知道,对于一元二次方程ax~2+bx+c=0(a0) ①来说,韦达定理及其逆定理又可以叙述成下述命题一的形式:命题一、方程的两根之和为常数 p,两根之积为常数 q 的充要条件是p=-b/a,q=c/a。从命题一出发,可以得到以下一组很有用的命题;命题二、方程①的两根互为相反数的充要条件是 b=0。命题三、方程的两根互为倒数的充要  相似文献   

8.
小学里检验方程的解有两个目的:一是判断解方程的过程是否完整正确;二是判断计算是否有误。笔者发现,在教学“简易方程”时,很多学生把检验方程的解的过程看作是一种形式,是瞎子成眼境——装装样子。如一名学生解方程“15-0.94+x=20”,错为: 解:0.94+x=20-15 x=5-0.94 x=4.16 检验:把x=4.16代入原方程, 左边=15-0.94+4.16=20,右边=20 左边=右边, 所以x=4.16是原方程的解。又有一学生解方程“0.5×8=8x”,错为:解:4=8x  相似文献   

9.
分式方程转化为整式方程时,未知数的取值范围发生变化,有可能产生增根.因此,解分式方程必须验根,就八年级而言,分式方程有哪些验根方法呢?一、代入检验法.将解得的根代入原方程的左、右两边,若左、右相等,则此根为原方程根,否则,此根为原方程的增根.例1.解方程xx-5=xx--62解:方程两边同乘以(x-5)(x-6)得x(x-6)=(x-2)(x-5)解得:x=10检验:当x=10时,左边=xx-5=2右边=xx--26=2,左边=右边∴x=10是原方程的根.评注:此验根方法不仅能检验出原方程的增根,而且可以检验出所求得根是否正确.二、增根比较法.所谓增根即使分式的分母为零的数.因此,令方程…  相似文献   

10.
学习了相反数和倒数的有关知识后,不难发现关于相反数和倒数具有如下性质: 1.如果a、b互为相反数,那么a+b=0; 2.如果a、b互为倒数,那么ab=1, 解答某些与相反数或倒数有关的问题时,应注意灵活巧用这两个性质. 例1 若a与b互为倒数,x与y互为相反数,则-2ab+2x+2y的值是___.(1998年成都市初一数学竞赛试题) 解:由a与b互为倒数,x与y互为相反数,得 ab=1,x+y=0. 原式=-2ab+2(x+y) =-2·1+2·0=-2. 例2 已知a与-b互为相反数,那么  相似文献   

11.
利用一元二次方程的求根公式,可以证明:方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0两根的a倍(a≠0)。运用这个结论,可以很快解决求作一个一元二次方程且使它的根分别是已知方程的各根的几倍问题。例1求作一个一元二次方程,使它的两根分别是方程3x~2-16x+5=0的两根的3倍。解:因为方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0的两根的a倍,所以,所求作的一元二次方程是x~2-16x+3×5=0,即x~2-16x+15=0.如果已知方程的二次项系数刚好等于所求方程的的根是已知方程各根的倍数,那么,就用已知方程二次项系数移乘常数项,二次项系数改为1,一次项不  相似文献   

12.
一道无理方程,往往有多种解法,要使解题简便,可因方程的不同情况而异。下面对无理方程的几种特殊解法介绍如下:一、观察法左边两根互为倒数,右边分为互为倒数的两数,观察得出简单方程.检验知,X1,X2都是原方程的根.二、换元法借用新未知数可求解.则原方程化为U+V=1或V=1-U.又U3+V2=(x-2)+(3-x)=1解得由解得X1=2,经检验知,它们都是原方程的根.三、混合换元法新设未知数与已知方程中的未知数混合使用求解.例1.解方程SX’+X—X八Z河一220.解:设y一、沈L刁,则原方程化为:y’+X-Xy-l—0,即付一1…  相似文献   

13.
A卷每题5分满分100分时间40分钟1.若方程m扩+4二十3一。有一个根是1,那么阴一2.一元二次方程(3x十1)’一4一O的根是3.已知一元二次方程护十Zx一1一O,它的根的判别式△~ ,根的情况是4.若。,口是一元二次方程*一3x一5一。的两个实数根,则生十粤 “尸5.方程x(x+1)~2的根是6.一元二次方程a护+bx+c一O有一个根是零的条件是((A)bZ一4ac=0(B)b=0(C)c二0(D)c共07.方程xZ一4x+2的根是( (A)x-一2 8.用换元法解方程于t的方程是(B)x--井一)2J丁—1了(C)x~士2(D)x=了3-2三J一+12=0,设t-王杏I,则关 ,.解方程、任丁不万~一x的结果是 10,关于x的一元…  相似文献   

14.
求根公式:一元一次方程的标准形式:ax+b=0(a≠0),其求根公式为:x=-b/a.一元一次方程只有一个根. 通常解法:去分母→去括号→移项→合并同类项→未知项系数化为1(即化为x=a的形式) 两种类型:(1)将未知数在等号左边,常数放在右边.比如:x +2x+3x =6.  相似文献   

15.
通过解答初中代数第三册(以下简称“课本”)117页练习3第(1)题得到了一个极为简单、易记的[性质]: 方程x+1/x=c+1/c的两根互为倒数,且为x_1=c,x_2=1/c。应用这个性质、运用观察法可简捷地解答一类方程(组),现仅就课本、参考书中一些习题为例说明如下:  相似文献   

16.
特殊的分式方程若采用一般解法,就显得繁琐、笨拙.因此,特殊的分式方程通常用特殊的解法.一、巧用倒数关系(1992年吉林省中考题、1993年济南市中考题)分析方程左边的两个分式成倒数关系,右边的,恰好2与也成倒数关系.经检验,x1、x2、x3、x4都是原方程的根.二、拆项法即将方程中的某个分式化为部分分式.例2解方程:1994年山东省中考题)可化为部分分式,即人而求得a一3,b—一3·解原方程化为化简,得rrt——1··”·5一1-。,·’·X—一4·经检验,x—-4是原方程的根.三、局部换元法此法针对方程中的某个局部进行换元,代…  相似文献   

17.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

18.
若x1,x2是方程ax2+bx+c=0(a≠0)的两个实数根,应用根与系数的关系,可不解方程直接求代数式等的值.这类代数式,都有一个共同的特点,互换字母x1、x2后,原代数式不变,则称它为一元二次方程的根的对称式.本文将从两个方面谈对称式在中考中的应用.  相似文献   

19.
将分式方程转化为整式方程,未知数的取值范围发生了变化,有可能产生增根.因此,解分式方程必须验根.下面介绍分式方程验根的五种方法.一、直接验根法将解得的根代入原方程,若左边等于右边,则此根为原方程的根,否则为原方程的增根.例1解方程x4--3x-1=x-14.解:方程两边同乘以(x-4)  相似文献   

20.
一般而言,对于二次方程ax12+bx1+c=0,ax22+bx2+c=0(a,b,c为常数,且a≠0),其中的x1,x2可看作方程ax2+bx+c=0(a≠0)的两根的前提是x1≠x2,这是因为当x1=x2时,x1与x2并不能完全保证是方程ax2+bx+c=0的两根,此时存在两种可能:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号