首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.  相似文献   

2.
We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke''s radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications.  相似文献   

3.
The 3D multicellular spheroids with intact cell–cell junctions have major roles in biological research by virtue of their unique advantage of mimicking the cellular physiological environments. In this work, a durable superamphiphobic silica aerogel surface (SSAS) has been fabricated for the upward culture of 3D multicellular spheroids. Poly(3,4-ethylenedioxythiophene) (PEDOT) was first electrodeposited on a conductive steel mesh as a first template for porous silica coating. Soot particles were then applied as a second template to construct a cauliflower-like silica aerogel nanostructure. After fluorination, a hierarchical structure with re-entrant curvature was finally fabricated as a durable superamphiphobic surface. This superamphiphobic surface also presented excellent antifouling towards biomacromolecules and cells, which has been demonstrated by the successful upward culture of cell spheroids. The upward culture makes the observation of cellular behavior in situ possible, holding great potential for 3D cellular evaluation in vitro.  相似文献   

4.
Monitoring cellular bioenergetic pathways provides the basis for a detailed understanding of the physiological state of a cell culture. Therefore, it is widely used as a tool amongst others in the field of in vitro toxicology. The resulting metabolic information allows for performing in vitro toxicology assays for assessing drug-induced toxicity. In this study, we demonstrate the value of a microsystem for the fully automated detection of drug-induced changes in cellular viability by continuous monitoring of the metabolic activity over several days. To this end, glucose consumption and lactate secretion of a hepatic tumor cell line were continuously measured using microfluidically addressed electrochemical sensors. Adapting enzyme-based electrochemical flat-plate sensors, originally designed for human whole-blood samples, to their use with cell culture medium supersedes the common manual and laborious colorimetric assays and off-line operated external measurement systems. The cells were exposed to different concentrations of the mitochondrial inhibitor rotenone and the cellular response was analyzed by detecting changes in the rates of the glucose and lactate metabolism. Thus, the system provides real-time information on drug-induced liver injury in vitro.  相似文献   

5.
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.  相似文献   

6.
Cell-cell interactions play a key role in regeneration, differentiation, and basic tissue function taking place under physiological shear forces. However, current solutions to mimic such interactions by micro-patterning cells within microfluidic devices have low resolution, high fabrication complexity, and are limited to one or two cell types. Here, we present a microfluidic platform capable of laminar patterning of any biotin-labeled peptide using streptavidin-based surface chemistry. The design permits the generation of arbitrary cell patterns from heterogeneous mixtures in microfluidic devices. We demonstrate the robust co-patterning of α-CD24, α-ASGPR-1, and α-Tie2 antibodies for rapid isolation and co-patterning of mixtures of hepatocytes and endothelial cells. In addition to one-step isolation and patterning, our design permits step-wise patterning of multiple cell types and empty spaces to create complex cellular geometries in vitro. In conclusion, we developed a microfluidic device that permits the generation of perfusable tissue-like patterns in microfluidic devices by directly injecting complex cell mixtures such as differentiated stem cells or tissue digests with minimal sample preparation.  相似文献   

7.
The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce controlled flow to an in vitro cancer model to better understand the relationship between flow and metastasis. Here, we report new hybrid spheroid-on-chip in vitro models for the impact of interstitial fluid flow on cancer spread. We designed a series of reusable glass microfluidic devices to contain one spheroid in a microwell under continuous perfusion culture. Spheroids derived from established cancer cell lines were perfused with complete media at a flow rate relevant to tumor interstitial fluid flow. Spheroid viability and migratory/invasive capabilities were maintained on-chip when compared to off-chip static conditions. Importantly, using flow conditions modeled in vitro, we are the first to report flow-induced secretion of pro-metastatic factors, in this case cytokines vascular endothelial growth factor and interleukin 6. In summary, we have developed a new, streamlined spheroid-on-chip in vitro model that represents a feasible in vitro alternative to conventional murine in vivo metastasis assays, including complex tumor environmental factors, such as interstitial fluid flow, extracellular matrices, and using 3D models to model nutrient and oxygen gradients. Our device, therefore, constitutes a robust alternative to in vivo early-metastasis models for determination of novel metastasis biomarkers as well as evaluation of therapeutically relevant molecular targets not possible in in vivo murine models.  相似文献   

8.
The in vitro study of liver functions and liver cell specific responses to external stimuli deals with the problem to preserve the in vivo functions of primary hepatocytes. In this study, we used the biochip OrganoPlateTM (MIMETAS) that combines different advantages for the cultivation of hepatocytes in vitro: (1) the perfusion flow is achieved without a pump allowing easy handling and placement in the incubator; (2) the phaseguides allow plating of matrix-embedded cells in lanes adjacent to the perfusion flow without physical barrier; and (3) the matrix-embedding ensures indirect contact of the cells to the flow. In order to evaluate the applicability of this biochip for the study of hepatocyte''s functions, MatrigelTM-embedded HepG2 cells were cultured over three weeks in this biochip and compared to a static Matrigel culture (3D) and a monolayer culture (2D). Chip-cultured cells grew in spheroid-like structures and were characterized by the formation of bile canaliculi and a high viability over 14 days. Hepatocyte-specific physiology was achieved as determined by an increase in albumin production. Improved detoxification metabolism was demonstrated by strongly increased cytochrome P450 activity and urea production. Additionally, chip-cultured cells displayed increased sensitivity to acetaminophen. Altogether, the OrganoPlate seems to be a very useful alternative for the cultivation of hepatocytes, as their behavior was strongly improved over 2D and static 3D cultures and the results were largely comparable and partly superior to the previous reports on biochip-cultured hepatocytes. As for the low technical needs, this platform has the appearance of being highly applicable for further studies of hepatocytes'' responses to external stimuli.  相似文献   

9.
Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell–cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers.  相似文献   

10.
Wound healing is an essential physiological process for tissue homeostasis, involving multiple types of cells, extracellular matrices, and growth factor/chemokine interactions. Many in vitro studies have investigated the interactions between cues mentioned above; however, most of them only focused on a single factor. In the present study, we design a wound healing device to recapitulate in vivo complex microenvironments and heterogeneous cell situations to investigate how three types of physiologically related cells interact with their microenvironments around and with each other during a wound healing process. Briefly, a microfluidic device with a micropillar substrate, where diameter and interspacing can be tuned to mimic the topographical features of the 3D extracellular matrix, was designed to perform positional cell loading on the micropillar substrate, co-culture of three types of physiologically related cells, keratinocytes, dermal fibroblasts, and human umbilical vein endothelial cells, as well as an investigation of their interactions during wound healing. The result showed that cell attachment, morphology, cytoskeleton distribution, and nucleus shape were strongly affected by the micropillars, and these cells showed collaborative response to heal the wound. Taken together, these findings highlight the dynamic relationship between cells and their microenvironments. Also, this reproducible device may facilitate the in vitro investigation of numerous physiological and pathological processes such as cancer metastasis, angiogenesis, and tissue engineering.  相似文献   

11.
Demand for analysis of rare cells such as circulating tumor cells in blood at the single molecule level has recently grown. For this purpose, several cell separation methods based on antibody-coated micropillars have been developed (e.g., Nagrath et al., Nature 450, 1235–1239 (2007)). However, it is difficult to ensure capture of targeted cells by these methods because capture depends on the probability of cell-micropillar collisions. We developed a new structure that actively exploits cellular flexibility for more efficient capture of a small number of cells in a target area. The depth of the sandwiching channel was slightly smaller than the diameter of the cells to ensure contact with the channel wall. For cell selection, we used anti-epithelial cell adhesion molecule antibodies, which specifically bind epithelial cells. First, we demonstrated cell capture with human promyelocytic leukemia (HL-60) cells, which are relatively homogeneous in size; in situ single molecule analysis was verified by our rolling circle amplification (RCA) method. Then, we used breast cancer cells (SK-BR-3) in blood, and demonstrated selective capture and cancer marker (HER2) detection by RCA. Cell capture by antibody-coated microchannels was greater than with negative control cells (RPMI-1788 lymphocytes) and non-coated microchannels. This system can be used to analyze small numbers of target cells in large quantities of mixed samples.  相似文献   

12.
We present a low cost microfluidic chip integrating 3D micro-chambers for the capture and the analysis of cells. This device has a simple design and a small footprint. It allows the implementation of standard biological protocols in a chip format with low volume consumption. The manufacturing process relies on hot-embossing of cyclo olefin copolymer, allowing the development of a low cost and robust device. A 3D design of microchannels was used to induce high flow velocity contrasts in the device and provide a selective immobilization. In narrow distribution channels, the liquid velocity induces a shear stress that overcomes adhesion forces and prevents cell immobilization or clogging. In large 3D chambers, the liquid velocity drops down below the threshold for cell attachment. The devices can be operated in a large range of input pressures and can even be handled manually using simple syringe or micropipette. Even at high flow injection rates, the 3D structures protect the captured cell from shear stress. To validate the performances of our device, we implemented immuno-fluorescence labeling and Fluorescence in Situ Hybridization (FISH) analysis on cancer cell lines and on a patient pleural effusion sample. FISH is a Food and Drug Administration approved cancer diagnostic technique that provides quantitative information about gene and chromosome aberration at the single cell level. It is usually considered as a long and fastidious test in medical diagnosis. This process can be easily implanted in our platform, and high resolution fluorescence imaging can be performed with reduced time and computer intensiveness. These results demonstrate the potential of this chip as a low cost, robust, and versatile tool adapted to complex and demanding protocols for medical diagnosis.  相似文献   

13.
Increasingly, invitro culture of adherent cell types utilizes three-dimensional (3D) scaffolds or aggregate culture strategies to mimic tissue-like, microenvironmental conditions. In parallel, new flow cytometry-based technologies are emerging to accurately analyze the composition and function of these microtissues (i.e., large particles) in a non-invasive and high-throughput way. Lacking, however, is an accessible platform that can be used to effectively sort or purify large particles based on analysis parameters. Here we describe a microfluidic-based, electromechanical approach to sort large particles. Specifically, sheath-less asymmetric curving channels were employed to separate and hydrodynamically focus particles to be analyzed and subsequently sorted. This design was developed and characterized based on wall shear stress, tortuosity of the flow path, vorticity of the fluid in the channel, sorting efficiency and enrichment ratio. The large particle sorting device was capable of purifying fluorescently labelled embryoid bodies (EBs) from unlabelled EBs with an efficiency of 87.3% ± 13.5%, and enrichment ratio of 12.2 ± 8.4 (n = 8), while preserving cell viability, differentiation potential, and long-term function.  相似文献   

14.
The design and fabrication of a membrane-integrated microfluidic cell culture device (five layers,≤500 μm total thickness) developed for high resolution microscopy is reported here. The multi-layer device was constructed to enable membrane separated cell culture for tissue mimetic in vitro model applications and pharmacodynamic evaluation studies. The microdevice was developed via a unique combination of low profile fluidic interconnect design, substrate transfer methodology, and wet silane bonding. To demonstrate the unique high resolution imaging capability of this device, we used oil immersion microscopy to image stained nuclei and mitochondria in primary hepatocytes adhered to the incorporated membrane  相似文献   

15.
This paper presents a spheroid chip in which three-dimensional (3D) tumor spheroids are not only formed by gravity-driven cell aggregation but also cultured at the perfusion rates controlled by balanced droplet dispensing without fluidic pumps. The previous spheroid chips require additional off-chip processes of spheroid formation and extraction as well as bulky components of fluidic pumps. However, the present spheroid chip, where autonomous medium droplet dispensers are integrated on a well array, achieves the on-chip 3D tumor spheroid formation and perfusion culture using simple structure without bulky fluidic pumps. In the experimental study, we demonstrated that the spheroid chip successfully forms 3D tumor spheroids in the wide diameter range of 220 μm–3.2 mm (uniformity > 90%) using H358, H23, and A549 non-small cell lung cancer cells. At the pump-less perfusion culture (Q = 0.1–0.3 μl/min) of spheroids, the number of H358 cells in the spheroid increased up to 50% from the static culture (Q = 0 μl/min) and the viability of the cultured cells also increased about 10%. Therefore, we experimentally verified that the perfusion environment created by the spheroid chip offers a favourable condition to the spheroids with high increase rate and viability. The present chip achieves on-chip 3D tumor spheroid formation and pump-less perfusion culture with simple structure, thereby exhibiting potential for use in integrated in-vivo-like cell culture systems.  相似文献   

16.
Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects.  相似文献   

17.
Surface acoustic waves (SAWs) have been used as a rapid and efficient technique for driving microparticles into a three-dimensional scaffold matrix, raising the possibility that SAW may be effective in seeding live cells into scaffolds, that is, if the cells were able to survive the infusion process. Primary osteoblast-like cells were used to specifically address this issue: To investigate the effects of SAW on the cells’ viability, proliferation, and differentiation. Fluorescence-labeled osteoblast-like cells were seeded into polycaprolactone scaffolds using the SAW method with a static method as a control. The cell distribution in the scaffold was assessed through image analysis. The cells were far more uniformly driven into the scaffold with the SAW method compared to the control, and the seeding process with SAW was also significantly faster: Cells were delivered into the scaffold in seconds compared to the hour-long process of static seeding. Over 80% of the osteoblast-like cells were found to be viable after being treated with SAW at 20 MHz for 10–30 s with an applied power of 380 mW over a wide range of cell suspension volumes (10–100 μℓ) and cell densities (1000–8000 cells∕μℓ). After determining the optimal cell seeding parameters, we further found that the treated cells offered the same functionality as untreated cells. Taken together, these results show that the SAW method has significant potential as a practical scaffold cell seeding method for tissue and orthopedic engineering.  相似文献   

18.
The living cells are arranged in a complex natural environment wherein they interact with extracellular matrix and other neighboring cells. Cell-cell interactions, especially those between distinct phenotypes, have attracted particular interest due to the significant physiological relevance they can reveal for both fundamental and applied biomedical research. To study cell-cell interactions, it is necessary to develop co-culture systems, where different cell types can be cultured within the same confined space. Although the current advancement in lab-on-a-chip technology has allowed the creation of in vitro models to mimic the complexity of in vivo environment, it is still rather challenging to create such co-culture systems for easy control of different colonies of cells. In this paper, we have demonstrated a straightforward method for the development of an on-chip co-culture system. It involves a series of steps to selectively change the surface property for discriminative cell seeding and to induce cellular interaction in a co-culture region. Bone marrow stromal cells (HS5) and a liver tumor cell line (HuH7) have been used to demonstrate this co-culture model. The cell migration and cellular interaction have been analyzed using microscopy and biochemical assays. This co-culture system could be used as a disease model to obtain biological insight of pathological progression, as well as a tool to evaluate the efficacy of different drugs for pharmaceutical studies.  相似文献   

19.
Replica obtained from micromolds patterned by simple photolithography has features with uniform heights, and attainable microchannels are thus quasi-two-dimensional. Recent progress in three-dimensional (3D) printing has enabled facile desktop fabrication of molds to replicate microchannels with varying heights. We investigated the replica obtained from four common techniques of 3D printing—fused deposition modeling, selective laser sintering, photo-polymer inkjet printing (PJ), and stereolithography (SL)—for the suitability to form microchannels in terms of the surface roughness inherent to the mechanism of 3D printing. There have been limited quantitative studies that focused on the surface roughness of a 3D-printed mold with different methods of 3D printing. We discussed that the surface roughness of the molds affected (1) transparency of the replica and (2) delamination pressure of poly(dimethylsiloxane) replica bonded to flat glass substrates. Thereafter, we quantified the accuracy of replication from 3D-printed molds by comparing the dimensions of the replicated parts to the designed dimensions and tested the ability to fabricate closely spaced microchannels. This study suggested that molds printed by PJ and SL printers were suitable for replica molding to fabricate microchannels with varying heights. The insight from this study shall be useful to fabricate 3D microchannels with controlled 3D patterns of flows guided by the geometry of the microchannels.  相似文献   

20.
Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the in vitro dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号