首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
一、忽视特殊情况【例1】过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有A.1条B.2条C.3条D.0条错解:设直线的方程为y=kx 1,联立y2=4x,y=kx 得(kx 1)2=4x,即:k2x2 (2k-4)x 1=0,再由Δ=0,得k=1,得答案A.剖析:本题的解法有两个问题:一是将斜率不存在的情况漏掉了,二是将斜率k=0的情形丢掉了.故本题应有三解,即直线有三条.小结:直线与抛物线只有一解时,并不一定相切,因为直线与抛物线的对称轴平行时,也只有一解.二、忽视焦点位置【例2】设双曲线的渐近线为:y=±32x,求其离心率.错解:由双曲线的渐近线为:y=±23x,可得:ba=23,从…  相似文献   

2.
人教版高中《数学》第二册(上)P114第6题“:证明双曲线的一个焦点到一条渐近线的距离等于虚半轴长”,联想c2=a2 b2,我们便得双曲线的一个重要性质:双曲线的中心O、焦点F、以及对应准线与渐近线的交点M构成一个直角三角形OMF.且OM=a,MF=b,OF=c.如图所示,准线x=ac2与渐近线y=ab x的交点为M(ac2,acb).由两点间的距离公式计算得OM=a,MF=b.因此△OMF是Rt△,其中FM⊥OM.下面就性质的应用,给出几例供参考.例1双曲线xa22-y42=1的焦点到渐近线的距离等于2.例2已知双曲线实轴长为2$2,一焦点是F(2,0),且以直线l:x-y=0为一渐近线,求此双曲线…  相似文献   

3.
董雄伟  陈奉奎 《高中数理化》2007,(11):41-42,39,40
一、选择题(每小题5分,共60分)1.若α∈R,则方程x2 4y2sinα=1所表示的曲线必定不是().A直线;B圆;C双曲线;D抛物线2.若焦点在x轴上的椭圆x22 ym2=1的离心率为21,则m=().A3;B23;C38;D323.抛物线y2=4x,按向量a平移后所得抛物线的焦点坐标为(3,2),则平移后的抛物线的顶点坐标为().A(4,2);B(2,2);C(-2,-2);D(2,3)4.如果双曲线的2个焦点分别为F1(-3,0)、F2(3,0),一条渐近线方程为y=2x,那么其2条准线间的距离是().A63;B4;C2;D15.已知定点A、B且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是().A21;B23;C27;D56.已知双曲线x2-y22=1…  相似文献   

4.
大家知道,双曲线x2a2-y2b2=k(a,b>0,k≠0)的渐近线方程为y=±bax,它可化为x2a2-y2b2=0,比较双曲线方程,两式左边的形式是一样的,我们把这两条直线统称为蜕化双曲线.即定义两条相交直线x2a2-y2b2=0称为双曲线x2a2-y2b2=k(a,b>0,k≠0)的蜕化双曲线.这样两条相交的直线方程化成了二次形式,使两直线形成一个整体,有利于解决有关问题.例1(1)设双曲线C:(y a)2-(x-a)2=2a,其渐近线过点(3,1),求C的渐近线方程.(2)以直线y=±(x 1)为渐近线的双曲线的焦距为4,求双曲线方程.分析(1)把欲求的渐近线看作蜕化双曲线:(y a)2-(x-a)2=0,把点(3,1)代入得a=1,…  相似文献   

5.
上海市高中二年级数学第一学期(试验本)课本第115页有这样一道例题:已知双曲线过点P(4,3),它的一条渐近线的方程为y=1/2x,求双曲线的标准方程.传统的解法:∵双曲线的一条渐近线方程为y=1/2x,∴当x=4时,渐近线上对应点的纵坐标为1/2×4=2,小于点P的纵坐标3(如图1),所以双曲线的焦点在y轴上.于是,设双曲线的方  相似文献   

6.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

7.
一、选择题 (本大题共 12小题 ,每小题 5分 ,共60分 )1.椭圆 2x2 +y2 =1的准线方程是 (   )   (A)y=± 2    (B)x =± 2   (C) y=± 2 (D)x=± 22 .抛物线x =12 0 y2 的焦点坐标是 (   )   (A) ( 0 ,5 )   (B) ( 5 ,0 )   (C) 0 ,15 (D) 15 ,03 .双曲线 y25 -x24=1两准线间的距离是(   )   (A) 10  (B) 5  (C) 103   (D) 534.以 x22 5 +y29=1的焦点为焦点 ,离心率e=2的双曲线方程是 (   )   (A) x26-y212 =1   (B) x26-y214 =1    (C) x24-y214 =1(D) x24-y212 =15 .过点P( -4 ,2 )与 x22 -y2 =1有…  相似文献   

8.
在"双曲线的几何性质"教学中笔者给出了一道习题:已知双曲线的渐近线方程为y=±3x/4,两准线间的距离为32/5,求双曲线的方程.学生给出了以下两种解答.  相似文献   

9.
不少文章都对焦点弦的有关性质的研究以及如何进行探究性学习进行了精彩的阐述,令人深有感触.本文试从命题的角度对此进行进一步的挖掘和探究.不妨设抛物线y2=2px(p>0),则焦点Fp2,0,准线l的方程:x=-p2.直线l1交抛物线于A(x1,y1)、B(x2,y2)两点,交x轴于点C(c,0),又作AA1⊥l,BB1⊥l,垂足分别为A1、B1(如图1所示).探究1若直线l1过焦点F,则y1y2=-p2(定值).那么其逆命题是否成立呢?分析:当l1⊥x轴时,命题显然成立.当l1与x轴不垂直时,设直线l1的方程为x=my+n,联立方程组y2=2px,x=my+n,消去x得y2-2pmy-2pn=0,∴y1y2=-2pn,∵y1y2=-p2,∴n=p2,∴…  相似文献   

10.
对一道高考题的探讨   总被引:3,自引:0,他引:3  
20 0 1年全国高考理科数学第 (19)题 (文科第 (2 0 )题 )为 :设抛物线 y2 =2 px(p>0 )的焦点为 F,经过点 F的直线交抛物线于 A,B两点 ,点 C在抛物线的准线上 ,且 BC∥ x轴 ,证明直线AC经过原点 O.由于本题中 O点就是抛物线的顶点 ,因此本题中的结论实际上就是 AC经过抛物线的顶点 ,这反映了抛物线的一个几何性质 .我们自然会联想 :椭圆、双曲线是否也具有类似的几何性质 ?我们先研究椭圆 .问题 1 设椭圆 x2a2 y2b2 =1(a>b>0 )的左焦点为 F,经过点 F的直线交椭圆于 A,B两点 ,点 C在椭圆的左准线 l上 ,且 BC∥ x轴 ,则直线 AC是否…  相似文献   

11.
毛双景 《高中数理化》2007,(10):42-43,40
一、选择题(每题4分,共40分)1.椭圆x2 my2=1的焦点在y轴上,且长轴是短轴的2倍,则m的值是().A21;B2C4D412.双曲线y32-x42=1的渐近线方程是().A y=±x3;B y=±32x;C y=±43x;D y=±34x3.已知椭圆1x62 my22=1的准线与y轴平行,则m的取值范围为().A-4≤m≤4且m≠0;B-44或m<-4;D0相似文献   

12.
高中解析几何课本有这样一类题目:已知双曲线的渐近线方程,再附有其他已知条件,求此双曲线方程.若能运用共渐近线的双曲线系来解此类问题,常能带来方便,本文试图探讨这一问题. 双曲线x~2/a~2-y~2/b~2=1和它的共轭双曲线x~2/a~2-y~2/b~2=1有共同的渐近线x/a±y/b=0. 双曲线系x~2/a~2-y~2/b~2=λ(λ≠0)的渐近线方程也是x/a±y/b=0.  相似文献   

13.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

14.
例1 与双曲线x2/2-y2=1有相同渐近线且经过点A(2,-3)的双曲线方程为( ). A.y2/9-x2/2=1 B.x2/x-y2/9=1 C.y2/7-X2/14=1 D.x2/14-y2/7=1 解:设所求双曲线方程为等x2/x-y2=λ(λ≠0).由于该双曲线过点(2,-3),则4/2-9=λ,即λ=-7,故所求双曲线方程为y2-x2/14=1.应选C.  相似文献   

15.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

16.
1、问题的提出:《平面解析几何》课本的给出了双曲线方程x~2/a~2-y~2/b~2=1的渐近线方程x/a±y/b=0,即x~2/a~2-y~2/b~2=0。于是一些学生误认为,一般双曲线方程,只要令其常数为零,即得双曲线的渐近线方程,然而事实并非如此,因为双曲线方程与其渐近线方程相差一个常数。 2、《解析几何答疑解惑》(陕西人民教育出版社)p110有一个结论;以y=±3/5x为渐近线的双曲线方程为:  相似文献   

17.
二次曲线是高中数学的重点内容之一 ,二次曲线问题往往入手容易 ,但要善始善终 ,获得正确完美的解答却不容易 .笔者根据自己的教学实践 ,结合解析几何中常见题型及其解法技巧 ,对一些典型错误分类剖析 ,旨在多角度发展思维能力 ,全方位提高解题质量 .1 生搬硬套 ,引起误解( 1 )不辨特殊和一般情况 ,套用二次曲线标准方程致错 .例 1 若双曲线的一条准线为 x=4 ,其相应的焦点为 ( 1 0 ,0 ) ,率心率为 2 ,求此双曲线方程 .错解 1 :由已知得 x=a2c=4 ,又 c=1 0 ,∴ a2 =4 0 ,b2 =c2 - a2 =6 0 ,∴双曲线方程为 x24 0 - y26 0 =1 .错解 2 :由已…  相似文献   

18.
命题 若一直线与抛物线 C:y2 =2 px(p>0 )相交于 A(x1 ,y1 ) ,B(x2 ,y2 )两点 ,则直线 AB的方程为 :2 px- (y1 y2 ) y y1 y2 =0 .证明 ∵点 A(x1 ,y1 ) ,B(x2 ,y2 )在抛物线 C:y2 =2 px上 ,∴ y21 =2 px1 ,y22 =2 px2 .作差得 :y21 - y22 =2 p(x1 - x2 ) ,当 x1 ≠ x2 时 ,k A B=y1 - y2x1 - x2 =2 py1 y2 ,∴直线 AB的方程为 :y- y1 =2 py1 y2(x- x1 ) ,即 2 px- (y1 y2 ) y y1 y2 =0 . 1当 x1 =x2 时 ,直线 AB为 :x=x1 ,此时y2 =- y1 ,故 1仍成立 .综上 ,命题成立 .特别地 :若 A(x1 ,y1 )与 B(x2 ,y2 )重合 ,即可得到过点 A…  相似文献   

19.
题目 抛物线C1:y=1/2px2(p>0)的焦点与双曲线C2∶x2/3-y2=l的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=(). A.√3/16 B.√3/8 C.2√3/3 D.4√3/3 解法1 设点M(x0,1/2px02),抛物线C1的焦点为F(0,p/2),双曲线C2的右焦点为F2(2,0),双曲线C2过第一象限的渐近线斜率为b/a=√3/3.  相似文献   

20.
.利用向量模的概念图 1【例 1】 已知点P是直线y=1上的动点 ,Q是OP上的动点 ,且|OP|·|OQ| =1,求动点Q的轨迹方程(如图 1) .解 :设Q(x ,y) ,(y >0 ) ,P(x1 ,1)∵ |OP|·|OQ| =1,∴x21 +1· x2 +y2 =1即 (x21 +1) (x2 +y2 ) =1①又OP ,OQ共线 ,OP∥OQ ,∴x -x1 y =0 ,即x1 =xy ②把②代入① ,并整理 ,得图 2x2 +y2 -x =0(y>0 ) .2 .利用非零向量垂直的充要条件【例 2】 已知圆x2 +(y-1) 2 =1上定点A( 0 ,2 ) ,动点B .直线AB交x轴于点C ,过C与x轴垂直的直线交弦OB的延长线于圆外一点P(如图 2 ) ,求P点的轨迹方程 .解 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号