首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
夏变函数f(Z)的不解析点称为奇点,而对于f(Z)99孤立奇点的类型又分为可去奇点、极点、本性奇点。在一般的复变函数教程中,对于f(Z)的奇点分类及其判别,往往要借助级数的理论而采用极限方法进行判别。当遇到7型奇点的判别,用极限方法也难作出结论。本文根据夏变函数零点与极点的关系,利用罗必塔法则,给出单复变函数孤立奇点的分类判别方法.定理一:设f(z)一针/(Z),,且g(。)一qz。一0,若z。是g(Z)的Z阶零点,z。是中(z)的n阶零点则m>n时,z。是fG)的m-n阶零点;mwtn时,z。是1(z)的n—m阶极点;m—n时,z…  相似文献   

2.
借助│z│<1内解析函数级为ρ的充要条件及定义讨论了│z│<1内的解析函数f1(z)+f2(z),f(z2),g(z)f(z)(g(z)为整函数),f′(z),∫zz 0f(ξ)dξ经过运算后的级.  相似文献   

3.
设f(z)是|z|〈R(0〈R〈+∞)上的亚纯函数,ai(z)(i=0,1,2,…,n-1)为|z|〈R上的n个全纯函数,且|ai(z)≤1,f(0)≠0,f(0)≠0,f(z)的每个零点的级大于或等于m,f(z)的每个极点的级大于或等于s;再设g(z)=f^(n)(z)+an-1(z)f^(n-1)(z)+…+a1f'(z)+a0f(z),其中g(0)≠0,g'(0)≠0,g(z)-bj的级分别为nj(nj≥2),g(0)≠bj(j=1,2,…,q),且(q-1)n+1/(q-1)m+1/q-1∑j=1^q1/nj(1+n/s)〈1.则对0〈r〈R,存在与n,l,m,s,q,bj,nj有关的正常数A、B和C,使得T(r,f)≤A(log^+|f(0)|+log^+|g(0)|+log^+1/|g(0)|+log+1/|g'(0)|)+B(logR/R-r+log+1/R+log^+R)+C.  相似文献   

4.
令f和g是两个可交换的超越整函数 ,本文中我们首先证明对任正整数n和m ,J(f g)=J(fn gm) ,然后证明函数h(p(z) ) az∈/B ,其中h(z)是任超越整函数 ,且h′(z) =0有无穷多个解 ,p(z)是一个多项式 ,且degp≥ 2 ,a(≠ 0 )∈C .  相似文献   

5.
几乎所有的微积分教科书都论述了下列复合函数的连续性定理: 设函数y=g(z)在z_0点连续,且函数z=f(x)在点x_0连续,z_0=f(x_0),又设复合函数y=g[f(x)]在点x=x_0的某一领域内是有定义的,则复合函数y=g[f(x)]必在x_0处连续。上述定理告诉我们:连续函数的复合函数仍旧是连续函数。现在问:关于复合函数的极限问题,也有类似的结论吗? 为回答这个问题,我们给出如下定理。  相似文献   

6.
函数f(x)(?)(x)和g(x)(?)(x)分别在[a,b]上连续,在(a,b)内(?)(x)≠0则必存在一点ξ∈(a,b)使得g(ξ)integral from n=1 to ab f(x)(?)(x)dx=f(ξ)integral from n=1 to b(a)g(x)(?)(x)dx成立.这个结论对于多个函数对f_i(x)(?)(x),i=1,2,…,2n也成立.  相似文献   

7.
随机变量的函数的数学期望   总被引:1,自引:0,他引:1  
由“曲线分布密度”的公式φq(y)=∑kφξ(xk)|g‘k(y)|和“曲面分布密度”的公式φξ(z)=∫czφ(g(y,z),y)|g‘z(y,z)|dy,对有函数关系的随机变量η=f(ξ)及ξ=f(ξ,η)的数学期望公式E(η)=∫φ(x)f(x)dx和E(ξ)=∫∫f(x,y)φ(x,y)dxdy给出证明,并给出了若干应用。  相似文献   

8.
整函数的惟一性   总被引:1,自引:0,他引:1  
研究了涉及导函数的整函数的惟一性, 主要证明了以下结果. 设 f(z) 和 g(z)为非常数整函数, n, k为满足n>2k 4的2个正整数. 若f(z)和g(z)的零点重数均至少为n, 且f(k)(z)和g(k)(z) CM分担1, 则或者f(z)=c1ecz, g(z)=c2e-cz, 其中c1, c2 和 c 为满足 (-1)kc1c2c2k= 1的常数; 或者f(z)≡g(z).  相似文献   

9.
本文对R.Goldstein关于复合亚纯函数的亏量与增长性定理作了正确的修正,得出:若f与g都是超越整函数,f(z)的下级λ(f)>0,0<λ(g)<p(g)<∞,且适合an(z)f(n)+a(n-1)(z)f(n-1)+…+a0(z)f=b(z),c(z)为适合T(r,c(z))=0(T(r,g))的整函数,ai(z)(i=1,2,…,n)是有理函数,ai(z)∞(i=0,1,2….n).an(z)0,an(z)≠0,b(z)∞(若c(z))恒为常数.则b(z)c(z)a0(z)),则有δ(c(z).f(g))=△(c(z),f(g))=0本文还得到复合亚纯函数的亏量与增长性其它三个结果。  相似文献   

10.
代数基本定理:任一n次有理整函数 f(z)=a_0z~n a_1z~(n-1)…… a_n(a_0≠0,n≥1)在复数域中恒有根。 证法1 用留数定理证明。因有理整函数有唯一的极点为无穷远点,因此存在正整数R,当|z|≥R时,有|f(z)|>1,即f(z)的零点只能位于|z|< R内,设零点个数为  相似文献   

11.
采用权弱分担值的思想讨论两个亚纯函数fnf′,gng′权弱分担有理函数的唯一性,得到:设p(z),q(z)为两个互质的n1,n2次多项式,f,g为两个非常数超越亚纯函数,如果fnf′与gng′分担"(pq((zz)),m)"且(1)当2≤m≤∞时,满足n≥max{11,2n1+4n2+3};(2)当m=1时,满足n≥max{13,2n1+4n2+3};(3)当m=0时,满足n≥max{23,2n1+4n2+3},则f=c1Q(z)exp(α(z)),g=c2Q-1(z)exp(-α(z)),其中:c1,c2为2个常数且Q(z)是有理函数;α(z)为满足(c1c2)n+1(Q′(z)/Q(z)+α′(z))2≡(p(z)/q(z))2的多项式,或者f=tg,t为常数且满足tn+1=1.  相似文献   

12.
Jensen公式∫0^2π ln |1-e^iθ|dθ=0是解析函数重要理论之一.文中证明当f(z)≤r上解析且f(0)≠0,其零点全体为{zk}i≤k≤n时,有变形Jensen公式为1/2π ∫0^2π ln |f(re^iθ)|dθ=ln|f(0)|+∑k=1^n ln(r/|zk|).  相似文献   

13.
本文给出了用算子Dλf(z)=z(1-z)λ+1*f(z)判别函数为单叶函数的两条判别法则,其中f(z)=z+∑∞k=2akzk,实数λ>-1,符号*为Hadamard卷积,并讨论了两类算子Dλ与Dn间的关系,这里算子Dn定义为D0f(z)=f(z),D1f(z)=Df(z)=zf′(z),Dnf(z)=D(Dn-1f(z)),n∈N.  相似文献   

14.
研究了高阶齐次线性微分方程f(k)+(Ak-1(z)e^pk-1(z)+Dk-1(z))f^(k-1)+…+(A0(z)e^p0(z)+D0(z))f=0解的增长性问题,其中pj(z)=ajz^n+bj,1z^n-1+…+bjn,,Aj(z),Dj(z)是有限级整函数。针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计。  相似文献   

15.
讨论复线性微分方程f(n)+An-1(z)f(n-1)+…+A1(z)f'+A0(z)f=0的解满足一定条件时,系数函数Aj需要满足的条件。  相似文献   

16.
考虑形如W=nP(z)的一类多值解析函数,其中n≥2,P(z)为z的多项式函数。认为该类函数实际应是由W=nX,而X=P(z)复合而成。指出了主幅角argz和argX在计算中的关键性作用,确定了计算结果的唯一性,改正了现有教材中的错误。  相似文献   

17.
设f1,f2是复方程f″+A(Z)f=0的两个线性无关解,其中A(z)是无穷级整函数且超级σ2(A)=0,假设E=f1,f2。研究E的零点分布,获得E的超级为+∞的Borel方向与σ2θ(E)的关系,并建立了的无穷级零点充满圆。  相似文献   

18.
设Ap,n(p,n是正整数)表示单位开圆盘U={z:|z|<1}内形为f(z)=zp+sum(akzk)from k=p+n to ∞的解析函数类.引进Ap,n的子类Hp,n(A,B,α,λ),导出一些有趣的性质,研究类Hp,n(A,B,α,1)中函数的p叶近于凸性和p叶星形性.  相似文献   

19.
讨论一类非齐次高阶线性微分方程解的增长性,并得到精确结论,即证明当整函数F,Aj和s≥1次多项式Pj(z)(j=0,1,…,k-1)满足某些条件时,方程,f^(k)+Ak-1(z)e^Pk-1(z)f(k-1)+…+A0(z)e^P0(z)f=F的解满足λ2(f)=λ2(f)=σ2(f)=s.  相似文献   

20.
本文研究具有超越整函数系数的二阶线性微分方程f″+A(z)f=^0的解的零点分布。证明当A(%)的增长级为(2,1.p)时,方程的每一个非平凡解的增长级都为(3,1.p),而且总存在一个非平凡解f(z)的零点收敛级等于其增长级(3,1;p)。进一步给出了方程存在无零点解的条件,证明当P非为整数时,方程的两个线性无关解中至多只有一个无零点。最后,证明了该方程总存在两个线性无关解f1(z)和f2(z),使得f1(z)×f2(z)的零点收敛级等于其增长级(3,1;P)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号