首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Dealing with representations is a crucial skill for students and such representational competence is essential for learning science. This study analysed the relationship between representational competence and content knowledge, student perceptions of teaching practices concerning the use of different representations, and their impact on students' outcome over a teaching unit. Participants were 931 students in 51 secondary school classes. Representational competence and content knowledge were interactively related. Representational aspects were only moderately included in teaching and students did not develop rich representational competence although content knowledge increased significantly. Multilevel regression showed that student perceptions of interpreting and constructing visual-graphical representations and active social construction of knowledge predicted students' outcome at class level, whereas the individually perceived amount of terms and use of symbolic representations influenced the students' achievement at individual level. Methodological and practical implications of these findings are discussed in relation to the development of representational competence in classrooms.  相似文献   

2.
There is growing research interest in the challenges and opportunities learners face in representing scientific understandings, processes and reasoning. These challenges include integrating verbal, visual and mathematical modes in science discourse to make strong conceptual links between representations and classroom experiences. Our paper reports on a project that aimed to identify practical and theoretical issues entailed in a representation-intensive approach to guiding students’ conceptual learning in science. We focus here on a teacher developing students’ understanding of the formation of ions and molecules. We argue that the representations produced by students in this process met the criteria for representational competence proposed by diSessa (Cognition and Instruction, 22, 293–331, 2004) and Kozma & Russell (2005). The students understood that an effective representation needed to show relevant information, focus on pertinent points, be self-sufficient in its claims about the topic and provide coherent links between different parts of the representation. The final activity showed that their representations reached Kozma & Russell’s (2005) highest level of competence, where the students were able to use specific features of their representations to critique their suitability for explaining bonding and were able to show how their representation linked to the periodic table as a representation. We conclude by considering the implications of these findings.  相似文献   

3.
There has been extensive research on children’s understanding of evaporation, but representational issues entailed in this understanding have not been investigated in depth. This study explored three students’ engagement with science concepts relating to evaporation through various representational modes, such as diagrams, verbal accounts, gestures, and captioned drawings. This engagement entailed students (a) clarifying their thinking through exploring representational resources; (b) developing understanding of what these representations signify; and (c) learning how to construct representational aspects of scientific explanation. The study involved a sequence of classroom lessons on evaporation and structured interviews with nine children, and found that a focus on representational challenges provided fresh insights into the conceptual task involved in learning science. The findings suggest that teacher‐mediated negotiation of representational issues as students construct different modal accounts can support enriched learning by enabling both (a) richer conceptual understanding by students; and (b) enhanced teacher insights into students’ thinking.  相似文献   

4.
The present article discusses the design and impact of computer‐based visualization tools for supporting student learning and representational competence in science. Specifically, learning outcomes and student representation use are compared between eight secondary classrooms utilizing The Connected Chemistry Curriculum and eight secondary chemistry using lecture‐based methods. Results from the quasi‐experimental intervention indicate that the curriculum and accompanying visualization tool yield only small to modest gains in student achievement on summative assessments. Analysis of student representation use on pre‐ and post‐assessments, however, indicate the students in Connected Chemistry classrooms are significantly more likely to use submicroscopic representations of chemical systems that are consistent with teacher and expert representation use. The affordances of visualization tools in inquiry activities to improve students' representational competence and conceptual understanding of content in the science classroom are discussed. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 1137–1158, 2011  相似文献   

5.
ABSTRACT

Because already existing classroom environment scales are unsuitable for science laboratory classes, a new instrument was developed and validated in a Class form (student's perceptions of the class as a whole) and a new Personal form (student's perceptions of his/her own role within the class). The instrument was cross‐nationally field tested with 5,447 students in 269 classes in six countries, and cross‐validated with 1,594 students in 92 classes in Australia. Each scale exhibited satisfactory internal consistency reliability, discriminant validity, and factorial validity, and differentiated between the perceptions of students in different classes. Use of the new instrument revealed that: science laboratory classes are dominated by closed‐ended activities; Class form means consistently were more favorable than Personal form means; associations existed between attitudinal outcomes and laboratory environment; and the Class and Personal form each accounted for unique variance in student attitudes.  相似文献   

6.
Compared with research on the role of student engagement with expert representations in learning science, investigation of the use and theoretical justification of student-generated representations to learn science is less common. In this paper, we present a framework that aims to integrate three perspectives to explain how and why representational construction supports learning in science. The first or semiotic perspective focuses on student use of particular features of symbolic and material tools to make meanings in science. The second or epistemic perspective focuses on how this representational construction relates to the broader picture of knowledge-building practices of inquiry in this disciplinary field, and the third or epistemological perspective focuses on how and what students can know through engaging in the challenge of representing causal accounts through these semiotic tools. We argue that each perspective entails productive constraints on students’ meaning-making as they construct and interpret their own representations. Our framework seeks to take into account the interplay of diverse cultural and cognitive resources students use in these meaning-making processes. We outline the basis for this framework before illustrating its explanatory value through a sequence of lessons on the topic of evaporation.  相似文献   

7.
The study sought to determine the effects of teacher-introduced multimodal representations and discourse on students’ task engagement and scientific language during cooperative, inquiry-based science. The study involved eight Year 6 teachers in two conditions (four very effective teachers and four effective teachers) who taught two units of inquiry-based science across two school terms. The results show that the very effective teachers spent significantly more time engaged in using embodied representations to illustrate points or communicate information. They also spent significantly more time engaged in interrogating students’ understandings and scaffolding and challenging their thinking than the effective teachers. In turn, the students in the very effective teachers’ classes spent significantly more time on-task and used significantly more relevant basic and scientific language to explain the phenomena they were investigating than their peers in the effective teachers’ classes. These are behaviours and language that are associated with successful learning in science.  相似文献   

8.
It is common practice in elementary science classrooms to have students create representations, such as drawings, as a way of exploring new content. While numerous studies suggest the benefits of representation in science, the majority focus on specific, canonical representations, such as graphs. Few offer insight or guidance regarding how teachers might effectively incorporate ad hoc, non-normative student-generated representations in their curricula. This study addresses this gap by detailing the relationship between two designed activities—one that supported more open-ended engagement with referents and the other that promoted a synthesis of referents—and the representational products that students generated as a result. We present data from a mixed age classroom (ages 6–9, N?=?32) as students depicted their understanding of loggerhead sea turtles. Findings indicate that students performed better when working alone in the open condition and in collaborative dyads in the synthesize condition. These results suggest that it is necessary to unpack how mediating factors (such as students' cooperative strategies, facilitator feedback and materials used) align, to support or inhibit students' representational activities.  相似文献   

9.
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) sense making of connections by verbally explaining how different representations map to one another, and (2) perceptual fluency that allows students to fast and effortlessly use perceptual features to make connections among representations. Because these different competencies are acquired via different types of learning processes, they require different types of instructional support: sense-making activities and fluency-building activities. In a prior experiment, we showed benefits for combining sense-making activities and fluency-building activities. In the current work, we test how to combine these two forms of instructional support, specifically, whether students should first work on sense-making activities or on fluency-building activities. This comparison allows us to investigate whether sense-making competencies enhance students’ acquisition of perceptual fluency (sense-making-first hypothesis) or whether perceptual fluency enhances students’ acquisition of sense-making competencies (fluency-first hypothesis). We conducted a lab experiment with 74 students from grades 3–5 working with an intelligent tutoring system for fractions. We assessed learning processes and learning outcomes related to representational competencies and domain knowledge. Overall, our results support the sense-making-first hypothesis, but not the fluency-first hypothesis.  相似文献   

10.
Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students’ learning of content knowledge, compared to text-only. But should students learn with a single type of visual representation or with multiple different types of visual representations? This article addresses this question from the perspective of the representation dilemma, namely that students often learn content they do not yet understand from representations they do not yet understand. To benefit from visual representations, students therefore need representational competencies, that is, knowledge about how visual representations depict information about the content. This article reviews literature on representational competencies involved in students’ learning of content knowledge. Building on this review, this article analyzes how the number of visual representations affects the role these representational competencies play during students’ learning of content knowledge. To this end, the article compares two common scenarios: text plus a single type of visual representations (T+SV) and text plus multiple types of visual representations (T+MV). The comparison yields seven hypotheses that describe under which conditions T+MV scenarios are more effective than T+SV scenarios. Finally, the article reviews empirical evidence for each hypothesis and discusses open questions about the representation dilemma.  相似文献   

11.
Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students’ understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students’ understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher’s reflection journal. Pre-test–post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students’ texts provided further evidence of the students’ ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers’ approaches to these aspects of instruction around chemical bonding.  相似文献   

12.
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students?? engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.  相似文献   

13.
Interacting with and translating across multiple representations is an essential characteristic of expertise and representational fluency. In this study, we explored the effect of interacting with and translating between representations in a computer simulation or in a paper-based assignment on scientific accuracy of undergraduate science students’ explanations regarding the underlying mechanisms of action potential. The study proposed that a simulation designed with scaffolded inquiry and with multiple dynamically linked representations fosters students to use greater scientific accuracy in speaking about a complex scientific phenomenon as well as to work with this complex knowledge in higher cognitive domains. Student explanations were analysed for use of accurate scientific language as they worked with the instructional tool as well as under test conditions. We also investigated the cognitive domain that students worked within as they created explanations of the phenomenon under study. The proportion of elaborations that occurred in higher-level cognitive domains such as applying, analysing, evaluating and synthesising was used to denote representational fluency. The rationale for this approach is discussed. Findings suggest that the simulation prompted students towards operating in higher cognitive domains in order to construct new knowledge and therefore promoted representational fluency. It also suggests that translating between representations in a simulation in a collaborative social setting contributes towards students’ use of accurate scientific language. Students’ perceptions expressed during the interviews confirmed the findings.  相似文献   

14.
Representational competence is a target of novel learning environments given the assumption that improved representational competence improves learning in science. There exists little evidence, however, that improving representational competence is positively correlated with learning outcomes across science disciplines. In this report, we argue that the previously reported weak relationships between representational competence and science learning outcomes have resulted from designs that do not explicitly analyze the discipline‐specific skills related to the representational competence construct. Here, we demonstrate through a detailed analysis of students' representation use that at least two demonstrated skills comprising representational competence (e.g., construction and selection) are not strongly related to improved conceptual understanding in the domain. We discuss the implications of these results for the design of future learning environments that aim to improve learning through improved representational competence.  相似文献   

15.
This article examines how emergent bilingual students used gestures in science class, and the consequences of students’ gestures when their language repertoire limited their possibilities to express themselves. The study derived from observations in two science classes in Sweden. In the first class, 3rd grade students (9–10 years old) were involved in a unit concerning electricity. The second class consisted of 7th‐grade students (13–14 years old) working with acids and bases. Data were analyzed by using practical epistemological analysis (PEA). When students’ language proficiency limited their possibility to express themselves, using gestures resulted in the continuation of the science activities. Furthermore, both peers and teachers drew on the used gestures to talk about the science content. In some situations, the meaning of the gestures needed to be negotiated. Regardless, the gestures were always related to language. Both students and teachers participated in this process, but the teachers directed the communication toward the goal of the lessons: learning how to talk science. The study contributes to the field by showing the importance of paying attention to and valuing bilingual students’ use of gestures as a way to express scientific knowledge. In addition, it demonstrates how teachers might draw on students’ gestures to teach science and discusses the importance of creating multimodal learning environments. © 2017 Wiley Periodicals, Inc. J Res Sci Teach 55: 121–144, 2018  相似文献   

16.
17.
The currency, relevancy and changing nature of science makes it a natural topic of focus for mass media outlets. Science teachers and students can capitalize on this wealth of scientific information to explore socio-scientific and sustainability issues; however, without a lens on how those media are created and how representations of science are constructed through media, the use of mass media in the science classroom may be risky. Limited research has explored how science teachers naturally use mass media to explore scientific issues in the classroom or how mass media is used to address potential overlaps between socio-scientific-issue based instruction and education for sustainability. This naturalistic study investigated the reported and actual classroom uses of mass media by secondary science teachers’ to explore socio-scientific and sustainability issues as well as the extent to which their instructional approaches did or did not overlap with frameworks for SSI-based instruction, education for sustainability, and media literacy education. The results of this study suggest that secondary science teachers use mass media to explore socio-scientific and sustainability issues, but their use of frameworks aligned with SSI-based, education for sustainability, and media literacy education was limited. This paper provides suggestions for how we, as science educators and researchers, can advance a teaching and learning agenda for encouraging instruction that more fully utilizes the potential of mass media to explore socio-scientific issues in line with perspectives from education for sustainability.  相似文献   

18.
This quantitative case study used a pre- and posttest design for exploring the gender differences in secondary school students’ (n?=?131, 45 males and 86 females) learning of the force concept when an interactive engagement type of teaching was used. In addition, students’ ability to interpret multiple representations (i.e., representational consistency) was documented by a pre- and posttest and scientific reasoning ability by a pretest only. Males significantly outperformed females in learning of the force concept, pre- and posttest representational consistency, and pretest scientific reasoning. However, the gender difference in learning of the force concept was not significant when ANCOVA was conducted using pretest results of representational consistency and scientific reasoning as covariates. This appeared to indicate that the gender difference in learning gain was related to students’ abilities before the instruction. Thus, the teaching method used was equally effective for both genders. Further, our quantitative finding about the relation between representational consistency and learning of the force concept supports the assumption that multiple representations are important in science learning.  相似文献   

19.
The purpose of this study was to examine how lower track science students would understand shifts in standard classroom discourse patterns. The researcher videotaped his daily efforts to renegotiate the lower track classroom environment to become more representative of a scientific community. This paper is an analysis of the implicit obstacles inherent in shifting class discussions to classroom arguments examining tentative hypotheses. Students have inserted struggles for social status into classroom arguments about scientific ideas making it difficult to separate in a group discussion when the evidence convinced a student or whether the social politics of the class had persuaded her. As a result of changing classroom rules for participation, engagement, and collaborative inquiry, students' abilities to argue scientifically were changed. Despite these shifts students continued to insert their own interpretations of argumentation, social norms, and strategies for active re-negotiation of the teacher's agenda for the construction of scientific classroom discourse.  相似文献   

20.
This paper investigates the use of multimodal representations to assess biological understanding in the final senior secondary school public examination in New South Wales, Australia. The investigation emanates from a larger Australian study concerned with the impact of disciplinary and technological innovations on science pedagogy, particularly in molecular genetics where much knowledge is represented in modalities other than, or in conjunction with, language and traditional print-based texts and visuals. The availability of digital technologies and their affordances for the learning and teaching of senior high school Biology now makes it realistic for examiners to include multimodal representations in assessment tasks. A qualitative analysis of final-year Biology examination papers from 2001 to 2013 identified and classified the multimodal representations included in this written external examination. Findings indicate that despite the ready availability of multimodal, multimedia representations in classroom learning and curriculum materials, and evidence of students’ engagement with ICT, the high-stakes examinations make little use of such resources. A consequence of this mismatch between curriculum outcomes and assessment tools is that students may be disadvantaged because their in-depth knowledge and understanding of biological concepts is not effectively demonstrated through traditional pen-and-paper tests. A move towards a range of alternative assessment formats is one way to ensure that assessment aligns with multimodal learning in the classroom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号