首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

2.
高中教材中有不等式链2/(1/a+1/b)≤(ab)~(1/2)≤(a+b)/2≤((a~2+b~2)/2)~(1/2),本文从形似联想出发,给出它的两个几何模型,凸显数形结合的和谐美.  相似文献   

3.
[1],[2]文介绍了基本不等式组(2ab)/(a+b)≤(ab)~(1/2)≤(a+b)/2≤((a~2+b~2)/2)~(1/2)的几何证法,本文再介绍几种几何证法,这几种证法都很简单,它们与[1],[2]文的证法比较起来,直观性更好,并且比[1]、[2]文还多证了一种平均值,即负二次幂平均值  相似文献   

4.
题目:已知a、b∈R~ 且a b=1,求证(d 1/a)(b 1/b)≥(25)/4.本文给出该不等式的5种证明.证法1:(分析法)欲证原不等式成立,只需证4(a~2 1)(b~2 1)≥25ab4a~2b~2 4a~2 4b~2 4≥25ab4a~2b~2 4(a b)~2-8ab 4≥25ab4a~2b~2-33ab 8≥0(ab-8)(4ab-1)≥0  相似文献   

5.
例1 已知|a|<1,|b|<1,a、b∈R,求证|(a+b)/(1+ab)|<1。在高中代数第二册(甲种本)中给出了如下证法。证 |(a+b)/(1+2b)|<1 (?)|a+b|<|1+ab| (?)|a+b|~2<|1+ab|~2 (?)(a+b)~2<(1+ab)~2 (?)a~2+2ab+b~2<1+2ab+a~2b~2 (?)1-a~2-b~2+a~2b~2>0 (?)(1-a~2)(1-b~2)>0。因为|a|<1,|b|<1,(1-a~2)(1-b~2)>0成立,所以|(a+b)/(1-ab)|<1。在教学中,如果到此为止,那么收获就太小了。实际上,这是一个含义深刻的例题,我们可以从下面几个方面来加以引伸: 一、改变题目条件,可引伸为新的命题。 1.从例1的证法可知,当a、b∈R时, |(a+b)/(1+ab)|<1(?)(1-a~2)(1-b~2)>0 ①成立。由此可知,当|a|>1,|b|>1时,不等式  相似文献   

6.
进行式的恒等变形时,常用到下面的技巧。一、同加、同减例(1) 已知(a+b)~2=7,(a-b)~2=3,求a~4+b~4的值。解:将(a+b)~2=7,(a-b)~2=3两式分别相加、相减得: 2(a~2+b~2)=10,4ab=4。即 a~2+b~2=5,ab=1 ∴ a~4+b~4=(a~2+b~2)~2-2a~2b~2=5~2-2×1~2=23。例(2) 设a>0,b>0,a~2+b~2=7ab,求证: lg[1/3(a+b)]=1/2(lga+lgb)。解:a~2+b~2=7ab等式两边同加上2ab得: (a+b)~2=9ab。即((a+b)/3)~2=ab,  相似文献   

7.
贵刊1990年第五期《方程组的解法及其应用》一文中的例5及其解法是: 若a、b为实数,且a~2+3a+1=0,b~2+3b+1=0,求b/a+a/b的值。(1987年泉州市初二双基邀请赛题) 解:由已知及方程根的定义可知,a、b是方程x~2+3x+1=0的两根,由韦达定理得a+b=-3,ab=1,∴b/a+a/b=(a~2+b~2)/ab=((a+b)~2-2ab)/ab  相似文献   

8.
问题已知a,b都是正数,求证:2/(1/a 1/b)≤ab~(1/2)≤(a b)/2≤((a~2 b~2)/2)~(1/2),记  相似文献   

9.
10.
文[1]给出了一道2007年乌克兰的竞赛题:设a,b,c>0,且abc≥1,求证(i)(a 1/(a 1))(b 1/(b 1))(c 1/(c 1))≥(27)/8;(ii)27(a~3 a~2 a 1)(b~3 b~3 b 1)·  相似文献   

11.
将完全平方公式(a+b)~2=a~2+2ab+b~2,(a-b)~2-2ab+b~2进行变形后易得以下几个公式:a~2+b~2=(a+b)~2-2ab=(a-b)~2+2ab,(a+b)~2=(a-b)~2+4ab(a-b)~2=(a+b)~2-4ab,(a+b)~2-(a-b)~2=2(a~2+b~2),(a+b)~2-(a-b)~2=4ab,(和差化积公式)ab=(a+b/2)~2-(a-b/2)~2.(积化和差公式)  相似文献   

12.
正在平时的教学中,有这样一道题,学生易懂,但就是易忘,以致于是屡做屡错.题目:设ab0,a~2+b~2-6ab=0,则(a+b)/(b-a)的值等于____.教师给出的经典解法是:由a~2+b~2-6ab=0得a~2+b~2  相似文献   

13.
<正>证明不等式的方法有很多,有基本不等式法、函数法等.本文从一个独特的视角,采用全新的方法来证明不等式,即数形结合法,透过不等式的表面发现其几何意义,构造相应的几何图形来阐述不等式,将抽象问题具体化,直观化.题目设a>0,b>0,证明不等式2ab/(a+b)≤(ab)(1/2)≤(a+b)/2≤((a(1/2)≤(a+b)/2≤((a2+b2+b2)/2)2)/2)(1/2),当且仅当a=b时等号成立.思路这是2017年苏州市的一道高考模  相似文献   

14.
对于两正实数a,b,几个平均值之间存在下面的不等关系: ((a~2 b~2)/2)~(1/2)≥(a b)/2≥(ab)~(1/2)≥(2ab)/(a b)式中当且仅当a=b时等号成立.那么它们之间的间隙淮大谁小呢?我们可得到如下不等式:  相似文献   

15.
本文拟谈由恒等式(a+b)~2=a~2+b~2+2ab引出的两个最值命题及应用。用这两个最值命题解答一些数学习题,解答简捷,巧妙。命题1 若a+b=s(定值),则当ab取最大值P(最小值Q)时,a~2+b~2取最小值S~2-2P(最大值S~2-2Q)。命题2 若a~2+b~2=S(定值),且a+b>0,则当ab取最大值p(最小值q)时,a+b取最大值(S~2+2p)~(1/2)(最小值(S~2+2q)~(1/2))。  相似文献   

16.
有这样一道代数题:巳知a~2=7-3a,b~2=7-3b。求(b~2)/a (a~2)/b的值。 对于这道题,一般同学是这样解的:由条件可知a,b是方程 x~2 3x-7=0的两根,故由韦达定理得a b=-3或ab=-7。所以,(b~2)/a (a~2)/b=(a~3 b~3)/ab  相似文献   

17.
在发表文[1]时,编者按中提出了方法的适用范围、可靠性、步骤等尚可探讨.下述定理完满地回答了这一问题.定理方程(*)(ax~2+b)/((cx~2+d)=(-dx+b)/(cx-a))~(1/2)(a,b,c,d∈R,ad≠bc)与方程 (1)(ax~2+b)/(cx~2+d)=x(x≥0)和(Ⅱ){(a~2+cd)x~2+(ad-bc)x+d~2+ab=0,(ax~2+b)/cx~2+d≥0,a~2+cd≠0}等价.  相似文献   

18.
九年义务教材初中《代数》第一册(下)第125页介绍的立方和(差)公式:(a+b)(a~2-ab+b~2)=a~3+b~3,(a-b)(a~2+ab+b~2)=a~3-b~3,这里给出它们的两个变形:a~3+b~3=(a+b)~3-3ab(a+b),a~3-b~3=(a-b)~3+3ab(a-b),它们在解题中有着广泛的应用.现举数例说明如下,供初一学生学习时参考.  相似文献   

19.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

20.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号