首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P ? 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

2.
Baseball     
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three‐dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

3.
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

4.
The purpose of this study was to determine how often flaws in pitching mechanics identified from biomechanical analysis are corrected. The biomechanics of 46 baseball pitchers were evaluated twice, with an average of 12 months (range 2–48 months) between evaluations. Pitchers were healthy at the time of both evaluations, competing at the high school, college, minor league or Major League level. After warming up, each participant pitched 10 full-effort fastballs. Automated three-dimensional motion analysis was used to compute eight kinematic parameters which were compared with a database of elite professional pitchers. Flaws—defined as deviations from the elite range—were explained to each participant or coach after his initial evaluation. Data from the second evaluation revealed that 44% of all flaws had been corrected. Flaws at the instant of foot contact (stride length, front foot position, shoulder external rotation, shoulder abduction, elbow flexion) or slightly after foot contact (time between pelvis rotation and upper trunk rotation) seemed to be corrected more often than flaws near the time of ball release (knee extension and shoulder abduction). Future research may determine which level athletes or which training methods are most effective for correcting flaws.  相似文献   

5.
Some studies have reported that overarm baseball pitching shows a proximal to distal sequential joint motion including a rapid extension of the elbow. It has been suggested that the rapid elbow extension just before ball release is not due to the action of the elbow extensor muscles, but the underlying mechanisms are not so clear. The purpose of this study was to determine the contributions of each joint muscular- and motion-dependent torques, including the upper trunk and throwing arm joints to generate the rapid elbow extension during baseball pitching. The right handed throwing motions of three baseball pitchers were recorded using five high-speed video cameras and the positional data were calculated using the direct linear transformation method. A throwing arm dynamic model of the upper trunk and throwing arm joints was then used, including 10 degrees of freedom, to calculate the throwing arm joint muscular-, throwing arm and upper trunk joint motion-, gravity-, and external force-dependent components that contribute to the maximum elbow extension angular velocity. The results showed that the rapid elbow extension was primarily due to the upper trunk counterclockwise rotation and shoulder horizontal adduction angular velocity-dependent torques. This study implied that the trunk counterclockwise rotators and shoulder horizontal adductors generate positive torques to maintain the angular velocities of the upper trunk counterclockwise rotation and shoulder horizontal adduction may play a key role in producing the rapid elbow extension.  相似文献   

6.
Controversy continues whether curveballs are stressful for young baseball pitchers. Furthermore, it is unproven whether professional baseball pitchers have fewer kinematic differences between fastballs and off-speed pitches than lower level pitchers. Kinematic and kinetic data were measured for 111 healthy baseball pitchers (26 youth, 21 high school, 20 collegiate, 26 minor league, and 18 major league level) throwing fastballs, curveballs, and change-ups in an indoor biomechanics laboratory with a high-speed, automated digitising system. Differences between pitch types and between competition levels were analysed with repeated measures ANOVA. Shoulder and elbow kinetics were greater in fastballs than in change-ups, while curveball kinetics were not different from the other two types of pitches. Kinematic angles at the instant of ball release varied between pitch types, while kinematic angles at the instant of lead foot contact varied between competition levels. There were no significant interactions between pitch type and competition level, meaning that kinetic and kinematic differences between pitch types did not vary by competition level. Like previous investigations, this study did not support the theory that curveballs are relatively more stressful for young pitchers. Although pitchers desire consistent kinematics, there were differences between pitch types, independent of competition level.  相似文献   

7.
In this study we compared the kinematic features of the throwing motion between young baseball players of different age groups. Forty-four Japanese baseball players aged 6.1 to 12.3 years who regularly played baseball, including pitchers and position players, had their throwing actions analyzed three-dimensionally using high speed videography. Of this sample, 26 players aged above 9 years of age were categorized as the senior group, while the remaining 18 were categorized as the junior group. Senior group throwers had greater height and body mass, and produced a greater ball speed than junior group throwers. The throwing arm movement of senior group throwers was similar to that of adult skilled players. However, in the junior group throwers, the shoulder horizontal adduction angle was larger during the arm acceleration phase, and the maximum angular velocities of elbow extension and shoulder internal rotation occurred later than in senior group throwers. These results indicate that players aged above 9 years can acquire a mature throwing arm movement, while players younger than that will use an immature motion. A possible reason why these differences were shown is that the official baseball is relatively heavy for junior group throwers; they would be better advised to use a lighter ball in throwing practice.  相似文献   

8.
为进一步明确影响棒球投手投球速度的关键因素,通过中国知网、Web of Science和PubMed等平台以棒球投手、投球速度、运动生物力学和鞭打动作等为关键词,检索并整理归纳20世纪90年代至今的相关文献资料。通过对比国内外优秀棒球投手投球速度和专项技术能力,发现投球时投掷臂肩关节外旋角度、肩关节水平外展角度、肘关节角度、躯干前倾幅度、前腿膝关节角度等运动学指标,投掷臂各环节受力峰值、前腿受到的最大地面反作用力等动力学指标均对投球速度起关键性影响作用。教练员和棒球投手可通过改善上下肢关节角度和角速度等指标参数的大小、增强肌肉力量和柔韧性等手段,完善投手投球技术动作,提高投球速度。  相似文献   

9.
Abstract

In this study we compared the kinematic features of the throwing motion between young baseball players of different age groups. Forty‐four Japanese baseball players aged 6.1 to 12.3 years who regularly played baseball, including pitchers and position players, had their throwing actions analyzed three‐dimensionally using high speed videography. Of this sample, 26 players aged above 9 years of age were categorized as the senior group, while the remaining 18 were categorized as the junior group. Senior group throwers had greater height and body mass, and produced a greater ball speed than junior group throwers. The throwing arm movement of senior group throwers was similar to that of adult skilled players. However, in the junior group throwers, the shoulder horizontal adduction angle was larger during the arm acceleration phase, and the maximum angular velocities of elbow extension and shoulder internal rotation occurred later than in senior group throwers. These results indicate that players aged above 9 years can acquire a mature throwing arm movement, while players younger than that will use an immature motion. A possible reason why these differences were shown is that the official baseball is relatively heavy for junior group throwers; they would be better advised to use a lighter ball in throwing practice.  相似文献   

10.
Baseball     
Efficient, sequential timing is essential for upper level pitching. Interestingly, pitchers vary considerably in timing related elements of pitching style including pelvis rotation, arm cocking, stride leg behaviour, and pitch delivery time. The purpose of this study was to determine whether relationships exist among these elements by examining the overall style of pitchers exhibiting different pelvis rotation patterns. Pitching styles were defined by pelvis orientation at the instant of stride foot contact. Pitchers demonstrating a pelvis orientation greater than 30° were designated as ‘early rotators’, while pitchers demonstrating a pelvis orientation less than 30° were designated as ‘late rotators’. Kinematic and temporal differences were associated with the two styles. During the arm cocking phase, early rotators showed significantly greater shoulder external rotation at the instant of stride foot contact, earlier occurrence of maximum pelvis rotation angular velocity, and shorter time taken to complete the phase. However, by the instant of maximum shoulder external rotation, early and late rotators appeared remarkably similar as no significant difference occurred in pelvis and arm orientations. Therefore, it appears that early and late rotators used different methods to achieve similar results, including throwing velocity. Significant differences in throwing arm kinetics were also found for 10 of the 11 measures in the study. As the pelvis assumed a more open position at stride foot contact, maximum kinetic values were found to both decrease in magnitude and occur at an earlier time within the pitch.  相似文献   

11.
Left-handed baseball pitchers are thought to have a number of theoretical advantages compared to right-handed pitchers; however, there is limited scientific research detailing differences in the pitching mechanics of right- and left-handed pitchers. Therefore, this study sought to understand whether any kinematic and kinetic differences existed between right- and left-handed baseball pitchers. A total of 52 collegiate pitchers were included in this study; 26 left-handed pitchers were compared to 26 age-, height-, weight- and ball velocity-matched right-handed pitchers. Demographic information, passive shoulder range of motion and kinematic and kinetic data were obtained for each pitcher participating in the study. Results indicated that left-handed pitchers did not have a glenohumeral internal rotation deficit as compared to right-handed pitchers. Kinematic analysis indicated that elbow flexion, horizontal glenohumeral abduction and wrist coronal plane motion were significantly different between the two study cohorts. It was also noted that left-handed pitchers had increased elbow varus moments. The findings of this study suggest that pitching coaches should be aware that there are biomechanical differences between left- and right-handed pitchers.  相似文献   

12.
Coaches teach proper mechanics at a young age in an effort to increase pitching efficiency (i.e., proper pitching mechanics). Unfortunately, the mechanics taught to beginning pitchers are based on the findings from adult pitchers and may result in techniques that are detrimental to younger pitchers. The purpose of this study was to compare kinematics published for pitchers across various ages in an effort to determine whether the pitching techniques vary across developmental periods. A meta-analysis of papers published describing pitching kinematics for youth and adult pitchers was conducted. Maximal rotational velocity of the trunk and maximum external rotation of the shoulder were observed during the arm cocking phase. Peak magnitudes for abduction, horizontal adduction, and shoulder internal rotation were observed during the deceleration phase of the movement. In addition, by comparing previously published data across youth and adult pitchers, valuable insight into the differences in mechanics was gained. The results demonstrated that there are some distinct differences between youth and adult pitching mechanics. This finding may allow increased focus to be applied to those parameters observed to differ across age, increasing the knowledge base available for coaches to properly instruct youth pitchers.  相似文献   

13.
Influence of pelvis rotation styles on baseball pitching mechanics   总被引:1,自引:0,他引:1  
Efficient, sequential timing is essential for upper level pitching. Interestingly, pitchers vary considerably in timing related elements of pitching style including pelvis rotation, arm cocking, stride leg behaviour, and pitch delivery time. The purpose of this study was to determine whether relationships exist among these elements by examining the overall style of pitchers exhibiting different pelvis rotation patterns. Pitching styles were defined by pelvis orientation at the instant of stride foot contact. Pitchers demonstrating a pelvis orientation greater than 30 degrees were designated as 'early rotators', while pitchers demonstrating a pelvis orientation less than 30 degrees were designated as 'late rotators'. Kinematic and temporal differences were associated with the two styles. During the arm cocking phase, early rotators showed significantly greater shoulder external rotation at the instant of stride foot contact, earlier occurrence of maximum pelvis rotation angular velocity, and shorter time taken to complete the phase. However, by the instant of maximum shoulder external rotation, early and late rotators appeared remarkably similar as no significant difference occurred in pelvis and arm orientations. Therefore, it appears that early and late rotators used different methods to achieve similar results, including throwing velocity. Significant differences in throwing arm kinetics were also found for 10 of the 11 measures in the study. As the pelvis assumed a more open position at stride foot contact, maximum kinetic values were found to both decrease in magnitude and occur at an earlier time within the pitch.  相似文献   

14.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

15.
The laws of bowling in cricket state 'a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand'. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not 'throwing' but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two-link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

16.
This paper considers the kinematic characteristics of overarm throwing with particular emphasis on the techniques of throwing and pitching in baseball. The technique is subdivided into: (1) sequential pattern of throwing, (2) lead foot contact, (3) preparatory phase, (4) arm acceleration and (5) instant of ball release. Specific biomechanical principles that underpin throwing and their application within baseball are identified. The paper also presents a case study of the three-dimensional characteristics of throwing technique in cricket. The aim was to compare the skill in cricket to that previously researched in baseball. The findings for throwing in cricket are similar to those reported for baseball, indicating that there is a definite crossover in the rationale of how an individual should throw specific to the demands of cricket and baseball. The differences noted--greater elbow flexion at lead foot contact and less external rotation during the preparation phase--can be attributed to the demands placed on the fielder and pitcher specific to their respective sports.  相似文献   

17.
We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

18.
While 10% of the general population is left-handed, 27% of professional baseball pitchers are left-handed. Biomechanical differences between left- and right-handed college pitchers have been previously reported, but these differences have yet to be examined at the professional level. Therefore, the purpose of this study was to compare pitching biomechanics between left- and right-handed professional pitchers. It was hypothesised that there would be significant kinematic and kinetic differences between these two groups. Pitching biomechanics were collected on 96 left-handed pitchers and a group of 96 right-handed pitchers matched for age, height, mass and ball velocity. Student t-tests were used to identify kinematic and kinetic differences (p < 0.05). Of the 31 variables tested, only four were found to be significantly different between the groups. Landing position of the stride foot, trunk separation at foot contact, maximum shoulder external rotation and trunk forward tilt at ball release were all significantly greater in right-handed pitchers. The magnitude of the statistical differences found were small and not consistent with differences in the two previous, smaller studies. Thus, the differences found may be of minimal practical significance and mechanics can be taught the same to all pitchers, regardless of throwing hand.  相似文献   

19.
Abstract

We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

20.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号