首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 904 毫秒
1.
The attitude tracking control problem of a spacecraft nonlinear model with external disturbances and inertia uncertainties is addressed in this paper. First, a new sliding mode controller is designed to ensure the asymptotic convergence of the attitude and angular velocity tracking errors against external disturbances and inertia uncertainties by using a modified differentiator to estimate the total disturbances. Second, an adaptive algorithm is applied to compensating the disturbances, by which another sliding mode controller is successfully designed to achieve a high performance on the attitude tracking in the presence of the inertia uncertainties, external disturbances and actuator saturations. Finally, simulation results are presented to illustrate effectiveness of the control strategies.  相似文献   

2.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

3.
This paper investigates the time-varying output formation tracking problem of heterogeneous multi-agent systems subjected to model uncertainties and external disturbances via adaptive event-triggered mechanism. Firstly, an adaptive distributed event-triggered observer is constructed to acquire the leader’s state and a time-varying formation output tracking controller utilizing sliding mode method is proposed to deal with the model uncertainties and external disturbances can be addressed. Secondly, an algorithm is given to claim the design procedures of the event-triggered based controller and asymptotic convergence of the controller is proved based on Lyapunov theory. Thirdly, Zeno-behavior is proved to be excluded strictly. Finally, a numerical example is given to illustrate the effectiveness of the proposed algorithm.  相似文献   

4.
A discrete-time output feedback quasi-sliding mode control scheme is proposed to realize the problem of robust tracking and model following for a class of uncertain linear systems in which states are unavailable and estimated states are not required. The proposed scheme guarantees the stability of the closed-loop system and achieves a very small ultimate boundedness of the tracking error in the presence of matched uncertain parameters and external slow disturbances. This scheme ensures the robustness to matched parametric uncertainties and disturbances. Since the proposed controller is designed without any switching element, the chattering phenomenon is eliminated. Furthermore, the knowledge of upper bound of uncertainties is not required. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

5.
Robust formation problems for linear multi-agent systems with uncertainties and external disturbances are investigated in this paper. The model of each agent can be described by a nominal linear system combined with external disturbances and uncertainties which include parameter perturbations and nonlinear uncertainties. A more general bound of uncertainties is introduced. A robust formation controller, which consists of a nominal controller and a robust compensator, is proposed to achieve the desired state formation and restrain the influence of uncertainties and disturbances. Furthermore, sufficient conditions for time-varying formation feasibility are introduced and proved. Finally, a numerical example is provided to demonstrate the theoretical results.  相似文献   

6.
In the present paper, the problem of designing a global sliding mode control scheme based on fractional operators for tracking a quadrotor trajectory is investigated. The model of the quadrotor system is given with disturbances and uncertainties. To converge in short finite time of the sliding manifold, a classical quadratic Lyapunov function was used and also a global stabilization of the quadrotor system is ensured. The proposed controller can be ensured the robustness against external disturbances and model uncertainties. Some scenarios are illustrated in this paper. Finally, a comparative study to three other controllers is provided to show the validity and feasibility of the proposed method.  相似文献   

7.
An adaptive backstepping control scheme is proposed for task-space trajectory tracking of robot manipulators in the presence of uncertain parameters and external disturbances. In the case of external disturbance-free, the developed controller guarantees that the desired trajectory is globally asymptotically followed. Moreover, taking disturbances into consideration, the controller is synthesized by using adaptive technique to estimate the system uncertainties. It is shown that L2 gain of the closed-loop system is allowed to be chosen arbitrarily small so as to achieve any level of L2 disturbance attenuation. The associated stability proof is constructive and accomplished by the development of a Lyapunov function candidate. Numerical simulation results are included to verify the control performance of the control approach derived.  相似文献   

8.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

9.
This paper investigates the problem of horizontal-plane trajectory tracking for fixed-wing unmanned aerial vehicles(UAVs) subjected to external disturbances and uncertainties including coupling and unmodeled dynamics. Under the assumption there exist ideal inner-loop controllers, the 12-state model is reduced to a 6-state translational motion model, which is described by a group of simplified nonlinear equations with equivalent disturbances via introducing general aerodynamic models. Then a new cascaded control structure consisting of an outer-loop controller for position control and inner-loop controllers for attitude and thrust control is proposed. Based on feedback linearization technology and signal compensation theory, the proposed controller applied for position control incorporates a nominal linear time-invariant controller and a robust compensator, the latter of which is introduced to restrain the effects of uncertainties and disturbances. The robust performance of the closed-loop system is proved. Actual experimental results conducted on a small fixed-wing aircraft demonstrate that the proposed control approach is effective.  相似文献   

10.
In the presence of system uncertainties, external disturbances and input nonlinearity, this paper is concerned with the adaptive terminal sliding mode controller to achieve synchronization between two identical attractors which belong to a class of second-order chaotic system. The proposed controller with adaptive feedback gains can compensate nonlinear dynamics of the synchronous error system without calculating the magnitudes of them. Meanwhile, these feedback gains are updated by the novel adaptive rules without required that the bounds of system uncertainties and external disturbances have to be known in advance. Some sufficient conditions for stability are provided based on the Lyapunov theorem and numerical studies are performed to verify the effectiveness of presented scheme.  相似文献   

11.
This paper aims to solve the finite time consensus control problem for spacecraft formation flying (SFF) while accounting for multiple time varying communication delays and changing topologies among SFF members. First, in the presence of model uncertainties and external disturbances, the coupled dynamics of relative position and attitude are derived based on the Lie group SE(3), in which the position and attitude tracking errors with respect to the virtual leader whose trajectory is computed offline are described by exponential coordinates. Then, a nonsingular fast terminal sliding mode (NFTSM) constructed by the exponential coordinates and velocity tracking errors is developed, based on which adaptive fuzzy NFTSM control schemes are proposed to guarantee that the ideal configurations of the SFF members with respect to the virtual leader can be achieved in finite time with high accuracy and all the aforementioned drawbacks can be overcome. The convergence and stability of the closed-loop system are proved theoretically by Lyapunov methods. Finally, numerical simulations are presented to validate the effectiveness and feasibility of the proposed controllers.  相似文献   

12.
In this paper, the robust motion control problem is investigated for quadrotors. The proposed controller includes two parts: an attitude controller and a position controller. Both the attitude and position controllers include a nominal controller and a robust compensator. The robust compensators are introduced to restrain the influence of uncertainties such as nonlinear dynamics, coupling, parametric uncertainties, and external disturbances in the rotational and translational dynamics. It is proven that the position tracking errors are ultimately bounded and the boundaries can be specified by choosing controller parameters. Experimental results on the quadrotor demonstrate the effectiveness of the robust control method.  相似文献   

13.
This paper investigates a robust H controller design for discrete-time polynomial fuzzy systems based on the sum-of-squares (SOS) approach when model uncertainties and external disturbances are simultaneously considered. At the beginning of the controller design procedure, a general discrete-time polynomial fuzzy control system proposed in this paper is used to represent a nonlinear system containing model uncertainties and external disturbances. Subsequently, through use of a nonquadratic Lyapunov function and the H performance index, the novel SOS-based robust H stability conditions are derived to guarantee the stability of the entire control system. By solving those stability conditions, control gains of the robust H polynomial fuzzy controller are obtained. Because the model uncertainties and external disturbances are considered simultaneously in the controller design procedure, the closed-loop control system achieves greater robustness and H performance against model uncertainties and external disturbances. Moreover, the novel operating-domain-based robust H stability conditions are derived by considering the operating domain constraint to relax the conservativeness of solving the stability conditions. Finally, simulation results demonstrated the availability and effectiveness of the proposed stability conditions, which are more general than those used in existing approaches.  相似文献   

14.
A spacecraft formation flying controller is designed using a sliding mode control scheme with the adaptive gain and neural networks. Six-degree-of-freedom spacecraft nonlinear dynamic model is considered, and a leader–follower approach is adopted for efficient spacecraft formation flying. Uncertainties and external disturbances have effects on controlling the relative position and attitude of the spacecrafts in the formation. The main benefit of the sliding mode control is the robust stability of the closed-loop system. To improve the performance of the sliding mode control, an adaptive controller based on neural networks is used to compensate for the effects of the modeling error, external disturbance, and nonlinearities. The stability analysis of the closed-loop system is performed using the Lyapunov stability theorem. A spacecraft model with 12 thrusts as actuators is considered for controlling the relative position and attitude of the follower spacecraft. Numerical simulation results are presented to show the effectiveness of the proposed controller.  相似文献   

15.
In this paper, we investigate the distributed formation reconfiguration problem of multiple spacecraft with collision avoidance in the presence of external disturbances. Artificial potential function (APF) based virtual velocity controllers for the spacecraft are firstly constructed, which overcome the local minima problem through introducing auxiliary inputs weighted by bump functions. Then, based on the robust integral of the sign of the error (RISE) control methodology, a distributed continuous asymptotic tracking control protocol is proposed, accomplishing both formation reconfiguration and the collision avoidance among spacecraft and with obstacles. Furthermore, using tools from graph theory, Lyapunov analysis and backstepping technique, we show the stability and collision avoidance performance of the closed-loop multiple spacecraft system. Numerical simulations for a spacecraft formation are finally provided to validate the effectiveness of the proposed algorithm.  相似文献   

16.
This paper studies the load mitigation problem for wind turbines by using active tuned mass dampers. A state space model for the tower/nacelle system is established with the consideration of tower/blade interaction. The uncertainties that appear in the damping matrix and natural frequencies are also considered in the controller design. External loads acting on the tower including the drag force induced by winds and the absolute base shear induced by the rotating blades are involved, and shaping filters for online generating these loads are proposed which can be easily implemented in numerical simulations. An adaptive sliding-mode controller is proposed to handle the system uncertainties, external disturbances and hard constraint, and also to improve the overall performance of the wind turbine system. Numerical simulations are performed to demonstrate the effectiveness of the proposed control law.  相似文献   

17.
This paper proposes a robust feedback controller using Linear Matrix Inequalities (LMIs) formulation for the stabilization of an underactuated mechanical system, namely the Inertia Wheel Inverted Pendulum (IWIP), in its upright position. Such mechatronic system is subject to state constraints, external disturbances and norm-bounded parametric uncertainties. The main idea to solve the stabilization problem lies in the use of the S-procedure Lemma. Such problem is then transformed into a solving problem of Bilinear Matrix Inequalities (BMIs). Through the Schur complement Lemma and the Matrix Inversion Lemma, a linearization procedure is employed to transform the BMIs into LMIs. Some improvements and comparisons with other LMI-based design techniques without state constraints are developed and discussed. An extensive portfolio of numerical studies is presented. The effectiveness and robustness of the proposed feedback controller toward uncertainties in the friction parameters and external disturbances are illustrated through simulation results.  相似文献   

18.
In this paper, a robust visual servoing control approach is proposed to address the landing problem for quadrotors on a moving platform. A vision system is implemented to estimate the position and velocity of the quadrotor. A robust cascade controller is proposed by following backstepping-like fundamentals and robust compensating theory. The effects of time-varying uncertainties, including parameter uncertainties and external disturbances, and time-varying delays resulted from image acquisition, image processing, and sensor measurement delays can be restrained. Experimental results using a quadrotor to land on a ground moving target illustrate the effectiveness of the proposed approach.  相似文献   

19.
This paper investigates the robust attitude tracking control problem for a rigid-flexible coupling spacecraft. First, the dynamic model for a rigid-flexible coupling spacecraft is established based on the first-order approximation method to fully reveal the coupling effect between rigid movement and flexible displacement when the spacecraft is in rapid maneuver. In the condition that flexible vibration measurements are not available, an robust output feedback controller which is independent of model is presented using Lyapunov method with considering state-independent disturbances. To resolve the chattering problem caused by the discontinuous sign function, a modified continuous output feedback controller is proposed by introducing functions with continuous property. Rigorous proof is achieved showing that the proposed control law ensures asymptotic stability and guarantees the attitude of a rigid-flexible spacecraft to track a time-varying reference attitude based on angle and angular velocity measurements only. Finally, simulations are carried out to verify the simplicity and effectiveness of the proposed control scheme.  相似文献   

20.
Over the last decade, considerable interest has been shown from industry, government and academia to the design of Vertical Take-Off and Landing (VTOL) autonomous aerial vehicles. This paper uses the recently developed sliding mode control driven by sliding mode disturbance observer (SMC-SMDO) approach to design a robust flight controller for a small quadrotor vehicle. This technique allows for a continuous control robust to external disturbance and model uncertainties to be computed without the use of high control gain or extensive computational power. The robustness of the control to unknown external disturbances also leads to a reduction of the design cost as less pre-flight analyses are required. The multiple-loop, multiple time-scale SMC-SMDO flight controller is designed to provide robust position and attitude control of the vehicle while relying only on knowledge of the limits of the disturbances. Extensive simulations of a 6 DOF computer model demonstrate the robustness of the control when faced with external disturbances (including wind, collision and actuator failure) as well as model uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号