首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
This paper deals with the problem of robust stability and robust stabilization for a class of continuous-time singular Takagi–Sugeno fuzzy systems. Sufficient conditions on stability and stabilization are proposed in terms of strict LMI (Linear Matrix Inequality) for uncertain T–S fuzzy models. In order to reduce the conservatism of results developed using quadratic method, an approach based on non-quadratic Lyapunov functions and S-procedure is proposed. Illustrative examples are given to show the effectiveness of the given results.  相似文献   

2.
This paper investigates a robust H controller design for discrete-time polynomial fuzzy systems based on the sum-of-squares (SOS) approach when model uncertainties and external disturbances are simultaneously considered. At the beginning of the controller design procedure, a general discrete-time polynomial fuzzy control system proposed in this paper is used to represent a nonlinear system containing model uncertainties and external disturbances. Subsequently, through use of a nonquadratic Lyapunov function and the H performance index, the novel SOS-based robust H stability conditions are derived to guarantee the stability of the entire control system. By solving those stability conditions, control gains of the robust H polynomial fuzzy controller are obtained. Because the model uncertainties and external disturbances are considered simultaneously in the controller design procedure, the closed-loop control system achieves greater robustness and H performance against model uncertainties and external disturbances. Moreover, the novel operating-domain-based robust H stability conditions are derived by considering the operating domain constraint to relax the conservativeness of solving the stability conditions. Finally, simulation results demonstrated the availability and effectiveness of the proposed stability conditions, which are more general than those used in existing approaches.  相似文献   

3.
In this paper, a novel error-driven nonlinear feedback technique is designed for partially constrained errors fuzzy adaptive observer-based dynamic surface control of a class of multiple-input-multiple-output nonlinear systems in the presence of uncertainties and interconnections. There is no requirements that the states are available for the controller design by constructing fuzzy adaptive observer, which can online identify the unmeasurable states using available output information only. By transforming partial tracking errors into new error variables, partially constrained tracking errors can be guaranteed to be confined in pre-specified performance regions. The feature of the error-driven nonlinear feedback technique is that the feedback gain self-adjusts with varying tracking errors, which prevents high-gain chattering with large errors and guarantees disturbance attenuation with small errors. Based on a new non-quadratic Lyapunov function, it is proved that the signals in the resulted closed-loop system are kept bounded. Simulation and comparative results are given to demonstrate the effectiveness of the proposed method.  相似文献   

4.
This paper concentrates on the output tracking control problem with L1-gain performance of positive switched systems. We adopt the multiple co-positive Lyapunov functions technique and conduct the dual design of the controller and the switching signal. Through introducing a new state variable, which is not the output error, the output tracking control problem of the original system is transformed into the stabilization problem of the dynamics system of this new state. The proposed approach is still effective even the output tracking control problem of any subsystem is unsolvable. According to the state being available or not, we establish the solvability conditions of the output tracking control problem for positive switched systems, respectively. In the end, a number example demonstrates the validity of the presented results.  相似文献   

5.
This paper is concerned with the robust H control problem for a general class of uncertain nonlinear systems with mixed time-delays. The mixed time-delays consist of both discrete and distributed delays. We aim to design a memoryless state feedback controller such that the closed-loop system is robustly stable for all admissible uncertainties with guaranteed H disturbance rejection attenuation level. By introducing a new Lyapunov–Krasovskii functional that reflects the mixed delays, sufficient conditions are established for the closed-loop system ensuring the robust stability as well as the H performance requirement. The controller design is facilitated in terms of the solvability of a Hamilton–Jacobi inequality. Two numerical examples are utilized to demonstrate the effectiveness of the proposed methods.  相似文献   

6.
For continuous-time nonlinear systems represented by Takagi–Sugeno fuzzy models, a new H reduced-order-observer based controller synthesis structure is investigated in this paper. By the fuzzy reduced-order observer and fuzzy controller, an augmented error system composed of the estimation and control errors is obtained. The fuzzy modeling residual terms are seen as part of the external disturbance, and an extra design matrix is added to facilitate the design process. The robustness and stability conditions are given based on Lyapunov function approach, then the conditions are transformed into convex form to facilitate the numerical solving process. Finally, by the comparison with existing methods in simulation section, the control performance and conservativeness reduction effects of the proposed methods are verified.  相似文献   

7.
This paper is concerned with the problem of robust fault-tolerant H dynamic output feedback control for fractional-order linear uncertain systems with the order satisfying 0 < α < 1 in the presence of actuator faults. A new linear matrix inequality (LMI) formulation corresponding to the H norm of fractional-order linear systems is proposed. Based on the new formulation and by introducing a new linearizing change of variables, sufficient conditions for robust fault-tolerant H dynamic output feedback controller designs are derived in term of LMIs. Furthermore, the proposed controller not only enables the system to keep robust stabilization, but also achieves a better H performance compared with the existing methods. Numerical examples are given to illustrate the design procedure and its effectiveness.  相似文献   

8.
In this paper, the stability, L1-gain analysis and asynchronous L1-gain control problems of uncertain discrete-time switched positive linear systems (DSPLSs) with dwell time are investigated. First, several convex and non-convex conditions on dwell time stability of DSPLSs with interval and polytopic uncertainties are presented, and the relation between these conditions is revealed. Then, via a switched dwell-time-dependent co-positive Lyapunov functions (SDTLFs) approach, convex sufficient conditions on L1-gain analysis and asynchronous L1-gain control of DSPLSs with interval uncertainties are derived. Meanwhile, via the switched parameter-dwell-time-dependent co-positive Lyapunov functions (SPDTLFs) approach, the L1-gain analysis and asynchronous L1-gain controller design problems of DSPLSs with polytopic uncertainties are also solved. The stability and L1-gain analysis results are given in terms of linear programming (LP). The controller design results are presented in terms of bilinear programming (BP), which can be solved with the help of iterative algorithm. At last, both numerical and practical examples are provided to show the effectiveness of the results.  相似文献   

9.
This paper is concerned with the problem of global asymptotical tracking of single-input single-output (SISO) nonlinear time-delay control systems. Based on the input-output feedback linearization technique and Lyapunov method for nonlinear state feedback synthesis, a robust globally asymptotical output tracking controller design methodology for a broad class of nonlinear time-delay control systems is developed. The underlying theoretical approaches are the differential geometry approach and the composite Lyapunov approach. One utilizes the parameterized co-ordinate transformation to transform the original nonlinear system into singularly perturbed model and the composite Lyapunov approach is then applied for output tracking. For the view of practical application, the proposed control methodology has been successfully applied to the famous nonlinear automobile idle-speed control system.  相似文献   

10.
This paper develops a robust state-feedback controller for active suspension system with time-varying input delay and wheelbase preview information in the presence of the parameter uncertainties. By employing system augmentation technique, a multi-objective control optimization model is first established and then this controller design is converted to a static full-state feedback controller design with robust H and generalized H2 performance, wherein the model-dependent control gain is evaluated by transforming the related nonlinear matrix inequalities into their corresponding linear matrix inequality forms based on Lyapunov theory, and then LMI (Linear-Matrix-Inequality) technique is applied to solve and obtain the desired controller. A numerical simulation case is finally provided to reveal the effectiveness and advantages of the proposed controller.  相似文献   

11.
The issue of adaptive sliding mode controller design via output knowledge is studied for discrete-time Markov jump systems in this paper by means of using singular system scheme. To force the system state onto the sliding motion, an appropriate switching surface depended on the system output is established. Meanwhile, the reachability of the sliding manifold is guaranteed by synthesizing the robust sliding mode controller and adaptive sliding mode controller for the accessible and inaccessible upper bounds of sliding patch, respectively. By using Lyapunov functional technique, sufficient criteria to guarantee the sliding motion to be stochastically admissible are proposed. Then the reachability conditions of the predesigned switching surface are developed. Finally, simulation results are provided to illustrate the effectiveness of the proposed approach.  相似文献   

12.
This paper studies the robust stabilization problem of a class of uncertain Lipschitz nonlinear systems with infinite distributed input delays. A novel robust predictor feedback controller is developed and the controller gain can be obtained via solving a linear matrix inequality. It is shown that the proposed robust predictor feedback controller can globally exponentially stabilize the concerned uncertain nonlinear system with infinite distributed input delays. The key to the proposed approach is the development of several new quadratic Lyapunov functionals. The obtained results are extended to the case of systems with both multiple constant input delays and infinite distributed input delays. It is noted that the obtained results include some existing results on systems with constant input delays or bounded distributed input delays as special cases. Finally, two examples of Chua’s circuit and spacecraft rendezvous system are presented to illustrate the effectiveness of the proposed robust controllers.  相似文献   

13.
This paper investigates the problem of robust H filtering for switched stochastic systems under asynchronous switching. The so-called asynchronous switching means that the switching between the filters and system modes is asynchronous. The aim is to design a filter ensuring robust exponential mean square stability and a prescribed H performance level for the filtering error systems. Based on the average dwell time approach and piecewise Lyapunov functional technique, sufficient conditions for the existence of the robust H filter are derived, and the proposed filter can be obtained by solving a set of LMIs(linear matrix inequalities). Finally, a numerical example is given to show the effectiveness of the proposed approach.  相似文献   

14.
This paper investigates the problem of stability and state-feedback control design for linear parameter-varying systems with time-varying delays. The uncertain parameters are assumed to belong to a polytope with bounded known variation rates. The new conditions are based on the Lyapunov theory and are expressed through Linear Matrix Inequalities. An alternative parameter-dependent Lyapunov-Krasovskii functional is employed and its time-derivative is handled using recent integral inequalities for quadratic functions proposed in the literature. As main results, a novel sufficient stability condition for delay-dependent systems as well as a new sufficient condition to design gain-scheduled state-feedback controllers are stated. In the new proposed methodology, the Lyapunov matrices and the system matrices are put separated making it suitable for supporting in a new way the design of the stabilization controller. An example, based on a model of a real-world problem, is provided to illustrate the effectiveness of the proposed method.  相似文献   

15.
This paper investigates the fractional-order (FO) adaptive neuro-fuzzy sliding mode control issue for a class of fuzzy singularly perturbed systems subject to the matched uncertainties and external disturbances. Firstly, a novel FO fuzzy sliding mode surface is presented. Secondly, by introducing an appropriate ε-dependent Lyapunov function, some H performance analysis criteria are given, which also ensure the robust stability of the sliding mode dynamics. Furthermore, a hybrid neuro-fuzzy network system (HNFNS) is introduced to estimate the matched uncertainty. Moreover, an FO adaptive fuzzy sliding mode controller is designed to drive the state trajectories of fuzzy singularly perturbed systems to the predefined FO sliding mode surface within a finite-time. Finally, two verification examples are presented to illustrate the validity of the proposed FO control scheme.  相似文献   

16.
This paper presents a relaxed scheme of fuzzy controller design for continuous-time nonlinear stochastic systems that are constructed by the Takagi–Sugeno (T–S) fuzzy models with multiplicative noises. Through Nonquadratic Lyapunov Functions (NQLF) and Non-Parallel Distributed Compensation (Non-PDC) control law, the less conservative Linear Matrix Inequality (LMI) stabilization conditions on solving fuzzy controllers are derived. Furthermore, in order to study the effects of stochastic behaviors on dynamic systems in real environments, the multiplicative noise term is introduced in the consequent part of fuzzy systems. For decreasing the conservatism of the conventional PDC-based fuzzy control, the NQLF stability synthesis approach is developed in this paper to obtain relaxed stability conditions for T–S fuzzy models with multiplicative noises. Finally, some simulation examples are provided to demonstrate the validity and applicability of the proposed fuzzy controller design approach.  相似文献   

17.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

18.
李中彬 《科技通报》2012,28(2):42-46
针对不确定时滞相关广义系统的H∞鲁棒控制问题进行研究,目的是设计线性无记忆状态反馈控制器,使得对闭环系统所有的允许的不确定性正则、无脉冲、稳定且具有满意的H∞性能.将时滞相关广义系统的新有界实引理以严格的不等式线性矩阵方法给出,这些都是通过引入新的Lyapunov-Krasovskii泛函,使用詹森不等式得出的.其次,在新的有界实引理的基础上给出了(不确定)时滞相关广义系统的(鲁棒)控制器存在的充分条件.所得出的结果都以严格的线性矩阵不等式形式表示并且都是时滞相关的,未涉及系统矩阵的分解.最后,通过数值算例说明了该方法具有较小的保守性和有效性.  相似文献   

19.
刘兴 《科技通报》2006,22(3):414-419
针对反馈可线性化系统,利用含估计参数的非线性反馈及状态微分同胚,基于李亚普诺夫方法给出了含非匹配不确定性系统的新型鲁棒控制器的设计方案。对一个数字实例进行仿真,结果证实了设计的可行性。  相似文献   

20.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号