首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

2.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

3.
在数学课上,杨老师出了一个练习题.例1如图1,已知∠B=∠C=30°,∠A=40°,求∠D(图1中所示的钝角)的度数.小毛第一个举手发言:“连结B、C,如图2.因为△ABC的内角和为180°,所以∠DBC+∠DCB=180°-30°×2-40°=80°;又因为△DBC的内角和为180°,所以∠D=180°-∠DBC-∠DCB=180°-80°=100°”.杨老师微笑着点了点头,表示赞同,又问:“还有什么解法?”聪明的小倪举手.“延长BD交AC于E,如图3,因为∠BDC=∠C+∠CED,∠CED=∠A+∠B,所以∠D=∠C+∠A+∠B=100°”.小倪答完,同学们不禁鼓掌,杨老师摸着下巴不住地点头小侯在旁边不…  相似文献   

4.
题目如图,已知:圆内接四边形ABCD中,AD≠AB, ∠DAB=90°,对角线AC平分∠DAB,若AD=a,AB=b,则AC=___。(1996年《中学生数理化》“东亚杯”竞赛初三年级试题) 解过点C作CE⊥AC交AB的延长线于点E,则∠ACB+∠BCE=90°,又∠DAB=90°→∠DCA+∠ACB=90°,∴∠DCA=∠BCE,又∠CBE=∠D。 AC平分∠DAB→DC=BC→DC=BC。  相似文献   

5.
例1如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变郾请试着找一找这个规律,你发现的规律是()郾(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=∠1+∠2摇摇(D)3∠A=2(∠1+∠2)(2003年北京市海淀区中考题)解延长BE、CD交于A',则∠A'=∠A郾在四边形ADA'E中,∠A+∠ADA'+∠A'+∠A'EA=360°.又∠2+∠ADA'=180°,∠A'EA+∠1=180°,∴∠2+∠ADA'+∠A'EA+∠1=360°郾∴∠A+∠A'=∠1+∠2,即摇2∠A=∠1+∠2郾故选(B)郾评析将任意三角形纸片轻轻一折,却折出了相关角与角之间的规律郾…  相似文献   

6.
设K的妙用     
在解有“比”的习题时 ,设 K可以使含“比”的项用 K的代数式表示 ,有利于思路的展开 ,达到顺利解题的目的。例 1 .在△ ABC中 ,已知∠ A∶∠ B∶∠ C=1∶ 2∶ 3,求 a∶ b∶ c。略解 :设∠ A=K,则∠ B=2 K,∠C=3K,由∠ A ∠B ∠ C=1 80°,得∠ A=30°、∠ B=60°、∠C=90°。设 a=K′,则 c=2 K′。∴b=3 K′,∴ a∶ b∶ c=K′∶ 3K′∶ 2 K′=1∶ 3∶ 2。  例 2 .如图 ,在△ ABC中 ,∠ ACB =90°,CD⊥ AB,若 AC=6,sin B=35。求 CD。略解 :由∠ACB=90°,CD⊥AB易得∠ B=∠ ACD。∵ sin B=35,∴ sin∠ ACD=ADAC=35…  相似文献   

7.
证法 5 :如图 5 ,作AC的延长线CE ,则点C处有一周角 ,即∠BCE+∠DCE+∠BCD =36 0° .∵∠BCE =∠ 1+∠B ,∠DCE=∠ 2 +∠D ,∴ (∠ 1+∠B) +(∠ 2 +∠D) +∠BCD =36 0° ,即 ∠BAD +∠B+∠BCD+∠D =36 0° .证法 6 :如图 6 ,若延长BA、CD相交于点E ,则有∠B +∠C =∠ 1+∠ 2 ,∴∠BAD+∠B +∠C+∠CDA=(180°-∠ 1) +∠B +∠C+(180°-∠ 2 )=36 0°- (∠ 1+∠ 2 ) +(∠B+∠C)=36 0°- (∠ 1+∠ 2 ) +(∠ 1+∠ 2 )=36 0° .证法 7:如图 7,若CD∥AB时 ,过点D作DE∥AB交BC于点E ,则∠A =180° -∠ 1,∠B =∠ 2 ,∴…  相似文献   

8.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

9.
每期一题     
题:△ABC是⊙○内接锐角三角形,射线AO、BO、CO各交⊙○于A′、B′、C′。记BC=a、CA=b、AB=C,BC′=B′C=a′CA′=C′A=b′、AB′=A′B=c′。求证:abc=ab′c′+a′bc′+a′b′c。分析:本题结论可以改写成: b′c′/bc+c′a′/ca+a′b′/ab=1; 由于∠BA′C与∠BAC互补、∠CB′A与∠CBA互补、∠AC′B与∠ACB互补,  相似文献   

10.
初中《几何》第二册(人教版)第49页有一道例题:已知,如图1,在△ABC 和△A′B′C′中,CD、C′D′分别是高,并且 AC=A′C′、CD= C′D′、∠ACB=∠A′C′B′,求证:△ABC≌△A′B′C′.证明过程详见课本.若把例题中条件∠ACB=∠A′C′B′换成 BC=B′C′,那么  相似文献   

11.
一种纯几何证明方法。证明过程如下: 设△ABC中各边BC,AC和AB的长分别是a、b和c,o为内切圆之圆心,D,E,F均为切点,在BC的延长线上截取CH=AF,连BO,作OK⊥BO交BC于L点,又作CK⊥BC交OK于K点,连BK,因∠BOK=∠BCK=Rt∠,故B,K,C,O四点共圆,连CO则,∠COB+∠BKC=180°,又因∠1+∠2+∠3=90°,∠3+∠AOF=90°,所以∠1+∠2=∠AOF,∠COB+∠AOF=180°,于是  相似文献   

12.
吴天辅 《云南教育》2003,(11):37-37
适当改变数学问题的题设或结论,抓住本质,不断地将“未知”转化为“已知”,使众多题目相互沟通,递推提升,从而循序渐进地解决一系列问题,对提高学生的思维能力,有重要意义。例1 如图1,在△ABC中,∠ACB=90°,CD、CE、CF分别是△ABC的角平分线,中线和高。求证:∠FCD=∠DCE。证明:∵∠ACB=90°,并且AE=EB∴CE=AE=BE=12AB∠A+∠B=90°∠B=∠BCE,∠ACD=∠BCD∵CF⊥AB∴90°-∠B=90°-∠ACF∴∠B=∠BCE=∠ACF∴∠ACD-∠ACF=∠BCD-∠BCE即:∠FCD=∠DCE例2如图2在△ABC中,∠ACB=90°,AB的垂直平分线MN与AB相…  相似文献   

13.
初学平面向量这部分内容时,同学们常常会出现各种错误.现列举几种常见错误,供大家辨析.一、两向量夹角的意义不清例1△ABC三边长均为2,且BC=a,CA=b,AB=c,求a.b+b.c+c.a的值.错解:∵△ABC三边长均为2,∴∠A=∠B=∠C=60°,|a|=|b|=|c|=2.∴a.b=|a|.|b|cosC=2,同理可得b.c=c.a=2,∴a.b+b.c+c.a=6.图1评析:这里误认为a与b的夹角为∠BCA,两向量的夹角应为平面上同一起点表示向量的两条有向线段间的夹角,范围是[0,π].因此a与b的夹角应为π-∠BCA.正解:如图1,作CD=BC,a与b即向量BC与CA的夹角为180°-∠BCA=120°.∴a.b=|a|.|b|cos12…  相似文献   

14.
题目如图1,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是().(A)∠APB=∠EPC(B)∠APE=90°(C)P是BC边的中点(D)BP∶BC=2∶3本题答案应该是C.但许多同学是这样解的:当∠APE=90°,∠1+∠α=90°,又因为∠β+∠1=90°,所以∠α=∠β,又因为∠B=∠C,所以△ABP∽△PCE.故选B.选择支B能否推出△ABP∽△ECP?可以换个角度思考,即当△ABP∽△PCE时,能否求出BP的长呢?不妨设正方形的边长为4a,BP=x,则CP=4a-x,CE=2a,根据相似三角形的对应边成比例可得CBEP=PACB,即2xa=4a4-…  相似文献   

15.
1.4.2.(1)AB=CD.(2)∠AEB=∠CFD.3.12a.4.15°.5.10.6.①②.7.41a.8.①②③.9.D.10.A.11.A.12.D.13.D.14.D.15.证法一:在△BRP和△CPQ中,∵∠B=∠C=60°,BP=CQ,∠BPR=∠CQP=90°,∴△BRP≌△CPQ,∴RP=PQ.同理,PQ=QR.∴△RPQ为等力三角形.证法二:∵AB=BC=AC,∴∠B=∠C=∠A=60°.又BP=CQ=AR,∴△BRP≌△CPQ≌△AQR.∴PR=PQ=RQ.16.(1)连结AD,∵D为BC中点,△ABC为等腰三角形,∴∠DAE=∠DAF,∴△ADE≌△ADF,∴DE=DF.(2)在Rt△BDE和Rt△CDF中∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C.又ED=DF,∴…  相似文献   

16.
有这样一道题,已知:如图1,O是ABC内任意一点,试说明:∠AOB=∠1+∠2+∠C(留给同学们思考)。我们可以由这个图形中抽出“”,它形如圆规状,就把它叫做“规形”(如图2),由上可知∠BOC=∠A+∠B+∠C就是“规形”的性质。现就用“规形”这一性质来求角度之和。∴∠A+∠B+∠C+∠D+∠E+∠F=360°.例2如图4,求∠A+∠B+∠C+∠D+∠E的度数。解:由“规形”图可知,ABOC为“规形”,由性质得∠1=∠A+∠B+∠C又∵∠1=∠2而∠2+∠D+∠E=180°∴∠A+∠B+∠D+∠E=180°.例3如图5,求∠A+∠B+∠C+∠D+∠E的度数解:由“规形”图可知,ACOD为“规…  相似文献   

17.
1.(59a+b)cm. 提示:环套环拉直时,两环间距为acm(见原题图),第 一个与最后一个环各有一个边缘长b-a2cm.因此,60个环长为60a+b-a2× 2=59a+b(cm). 2.120. 提示:如图1,因为△ABC的三边相等,所以它 的三个内角都是60°.故在△ACD与△CBE中,因为AD=CE,∠CAD=∠BCE =60°,AC=CB,所以△ACD≌△CBE(SAS).所以∠3=∠1.因为∠3+∠2= 60°,所以∠1+∠2=60°.所以∠BFC=180°-60°=120°. 图1        图2        图3 3.提示:如图2,以ME为轴,将△DME翻折至另一侧,得△EMF,因为 ∠DME=90°,故点D,M,F共线,连…  相似文献   

18.
在几何中,基本图形是较复杂图形的基础,抓住一些基本图形的特性,许多几何问题常可迎刃而解,现举一例说明.如图1,线段AB、CD相交于点P,则∠A+∠D=∠B+∠C.这是一个很有用的基本图形,由于这两个三角形有一个角是对顶角,因此我们常称它为对顶三角形.其性质(图1中∠A+∠D=∠B+∠C)很容易得到.应用这一基本图形及其性质可以巧解许多问题.一、寻找基本图形解题例1如图2,求∠A+∠B+∠C+∠D+∠E+∠F的度数.解:显然∠A+∠B=∠2+∠3,∠C+∠D=∠1+∠2,∠E+∠F=∠1+∠3,所以∠A+∠B+∠C+∠D+∠E+∠F=2(∠1+∠2+∠3)=2×180°=360°.二、构…  相似文献   

19.
CHBDGA图2全等三角形是能完全重合的两个图形,因此,全等三角形的面积相等.巧用这一结论,可顺利地解答一些几何题.例1如图1,正方形OMNP的顶点O与正方形ABCD的中心O重合,且它们的边长相等,都为a.若四边形OEBF的面积为16,求a的值.解:在正方形ABCD中,∵O是对角线的交点,∴OB=OC,∠OBE=∠OCF=45°,S△OBC=14SABCD=14a2.∵∠EOP=∠EOB+∠BOF,∠BOC=∠FOC+∠BOF,又∵∠EOP=∠BOC=90°,∴∠EOB=∠FOC.又∵∠EOP=∠BOC=90°,∴△EOB≌△FOC.∴S△EOB=S△FOC.∴S△OBC=SOEBF.∴14a2=16,a=8.例2如图2,在四边…  相似文献   

20.
习题如图1,设∠BOC=α,求证:α=∠A+∠B+∠C.证明延长 BO交 AC 于点 D.∵α是△COD 的外角,∴α=∠1+∠C.∵∠1是△ABD 的外角,∴∠1=∠A+∠B.∴α=∠A+∠B+∠C.巧用这道习题的结论,可迅速地解答一些与角有关的计算题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号