首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study examined Malaysian science teachers' pedagogical content knowledge (PCK) of selected physics concepts. The two components of PCK investigated were (i) knowledge of students' understanding, conceptions and misconceptions of topics, and (ii) knowledge of strategies and representations for teaching particular topics. The participants were 12 trainee teachers from various academic science backgrounds attending a one-year postgraduate teacher-training course. They were interviewed on selected basic concepts in physics that are found in the Malaysian Integrated Science curriculum for lower secondary level. The findings showed that trainee teachers' PCK for promoting conceptual understanding is limited. They lacked the ability to transform their understanding of basic concepts in physics required to teach lower secondary school science pupils. The trainees' level of content knowledge affected their awareness of pupils' likely misconceptions. Consequently, the trainees were unable to employ the appropriate teaching strategies required to explain the scientific ideas. This study provides some pedagogical implications for the training of science teachers.  相似文献   

2.
Learning to teach science as inquiry in the rough and tumble of practice   总被引:2,自引:0,他引:2  
This study examined the knowledge, beliefs and efforts of five prospective teachers to enact teaching science as inquiry, over the course of a one‐year high school fieldwork experience. Data sources included interviews, field notes, and artifacts, as these prospective teachers engaged in learning how to teach science. Research questions included 1) What were these prospective teachers' beliefs of teaching science? 2) To what extent did these prospective teachers articulate understandings of teaching science as inquiry? 3) In what ways, if any, did these prospective teachers endeavor to teach science as inquiry in their classrooms? 4) In what ways did the mentor teachers' views of teaching science appear to support or constrain these prospective teachers' intentions and abilities to teach science as inquiry? Despite support from a professional development school setting, the Interns' teaching strategies represented an entire spectrum of practice—from traditional, lecture‐driven lessons, to innovative, open, full‐inquiry projects. Evidence suggests one of the critical factors influencing a prospective teacher's intentions and abilities to teach science as inquiry, is the teacher's complex set of personal beliefs about teaching and of science. This paper explores the methodological issues in examining teachers' beliefs and knowledge in actual classroom practice. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 613–642, 2007.  相似文献   

3.
《师资教育杂志》2012,38(1):95-109

This paper reports the findings of a study which investigated primary BEd student teachers' scientific backgrounds, attitudes towards science and towards teaching science, their confidence to teach science, and their scientific knowledge and understanding. The findings are discussed in relation to what primary teachers need to know in order to be able to teach science, and to our developing understanding of how science is perceived, experienced and understood by learners. The paper concludes with a discussion of the effectiveness of a pilot course developed to address the issues raised by the study. It is 'learner centred' and focused on the development of knowledge and understanding rather than process, and on factors likely to promote pupil (and student) understanding. The outcomes of the pilot work raise further substantive issues.  相似文献   

4.
Pre‐service teachers face many challenges as they learn to teach in ways that are different from their own educational experiences. Pre‐service teachers often enter teacher education courses with pre‐conceptions about teaching and learning that may or may not be consistent with contemporary learning theory. To build on preservice teachers' prior knowledge, we need to identify the types of views they have when entering teacher education courses and the views they develop throughout these courses. The study reported here focuses specifically on preservice teachers' views of their own students' prior knowledge and the implications these views have on their understanding of the formative assessment process. Sixty‐one preservice teachers were studied from three sections of a science methods course. Results indicate that preservice teachers exhibited a limited number of views about students' prior knowledge. These views tended to privilege either academic or experience‐based concepts for different aspects of formative assessment, in contrast to contemporary perspectives on teaching for understanding. Rather than considering these views as misconceptions, it is argued that it is more useful to consider them as resources for further development of a more flexible concept of formative assessment. Four common views are discussed in detail and applied to science teacher education. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 497–523, 2008  相似文献   

5.
The Science Teachers Learning from Lesson Analysis (STeLLA) project is a videobased analysis‐of‐practice PD program aimed at improving teacher and student learning at the upper elementary level. The PD program developed and utilized two “lenses,” a Science Content Storyline Lens and a Student Thinking Lens, to help teachers analyze science teaching and learning and to improve teaching practices in this year‐long program. Participants included 48 teachers (n = 32 experimental, n = 16 control) and 1,490 students. The STeLLA program significantly improved teachers' science content knowledge and their ability to analyze science teaching. Notably, the STeLLA teachers further increased their classroom use of science teaching strategies associated with both lenses while their students increased their science content knowledge. Multi‐level HLM analyses linked higher average gains in student learning with teachers' science content knowledge, teachers' pedagogical content knowledge about student thinking, and teaching practices aimed at improving the coherence of the science content storyline. This paper highlights the importance of the science content storyline in the STeLLA program and discusses its potential significance in science teaching and professional development more broadly. © 2011 Wiley Periodicals, Inc., J Res Sci Teach 48: 117–148, 2011  相似文献   

6.
Drawn from the norms and rules of their fields, scientists use variety of practices, such as asking questions and arguing based on evidence, to engage in research that will contribute to our understanding of Earth and beyond. In this study, we explore how preservice teachers' learn to teach scientific practices while teaching plate tectonic theory. In particular, our aim is to observe which scientific practices preservice teachers use while teaching an earth science unit, how do they integrate these practices into their lessons, and what challenges do they face during their first time teaching of an earth science content area integrated with scientific practices. The study is designed as a qualitative, exploratory case study of seven preservice teachers while they were learning to teach plate tectonic theory to a group of middle school students. The data were driven from the video records and artifacts of the preservice teachers' learning and teaching processes as well as written reflections on the teaching. Intertextual discourse analysis was used to understand what scientific practices preservice teachers choose to integrate into their teaching experience. Our results showed that preservice teachers chose to focus on four aspects of scientific practices: (1) employing historical understanding of how the theory emerged, (2) encouraging the use of evidence to build up a theory, (3) observation and interpretation of data maps, and (4) collaborative practices in making up the theory. For each of these practices, we also looked at the common challenges faced by preservice teachers by using constant comparative analysis. We observed the practices that preservice teachers decided to use and the challenges they faced, which were determined by what might have come as in their personal history as learners. Therefore, in order to strengthen preservice teachers' background, college courses should be arranged to teach important scientific ideas through scientific practices. In addition, such practices should also reflect the authentic practices of earth scientists such as use of historical record and differentiating observation versus interpretation.  相似文献   

7.
This article investigates three teachers' conceptions and use of inquiry‐based instructional strategies throughout a professional development program. The professional development program consisted of a 2‐week summer inquiry institute and research experience in university scientists' laboratories, as well as three academic year workshops. Insights gained from an in‐depth study of these three secondary teachers resulted in a model of teacher conceptions that can be used to direct future inquiry professional development. Teachers' conceptions of inquiry teaching were established through intensive case–study research that incorporated extensive classroom observations and interviews. Through their participation in the professional development experience, the teachers gained a deeper understanding of how to implement inquiry practices in their classrooms. The teachers gained confidence and practice with inquiry methods through developing and presenting their institute‐developed inquiry lessons, through observing other teachers' lessons, and participating as students in the workshop inquiry activities. Data analysis revealed that a set of four core conceptions guided the teachers' use of inquiry‐based practices in their classrooms. The teachers' conceptions of science, their students, effective teaching practices, and the purpose of education influenced the type and amount of inquiry instruction performed in the high school classrooms. The research findings suggest that to be successful inquiry professional development must not only teach inquiry knowledge, but it must also assess and address teachers' core teaching conceptions. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1318–1347, 2007  相似文献   

8.
This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject‐specific considerations for teaching and learning. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 443–463, 2002  相似文献   

9.
Technological pedagogical content knowledge TPACK refers to the knowledge set that teachers currently use to further improve the quality of their teaching and assist their students in learning. Several TPACK models have been proposed, either for discussing TPACK's possible composition or its practical applications. Considering that teachers' practical experiences should also be critical to the development of those teachers' knowledge, this study invited a research panel (six researchers) and an expert panel (54 science‐related educators) to propose and validate the framework of TPACK‐practical. After two rounds of anonymous communications that followed Delphi survey techniques, a total of eight dimensions of TPACK‐practical and corresponding indicators were identified and rated as having high levels of importance. Among these knowledge dimensions, the knowledge of direct information and communication technology uses for enhancing teachers' professionalism and students' conceptual comprehension was rated with a high level of importance. Also, disciplinary differences were found to exist between the different groups of experts. Biology teachers showed significantly higher ratings across all knowledge dimensions, whereas physics teachers' ratings were comparatively low. Such findings suggest that the structure and content of subject matter shapes not only the way they teach with technology but also the thinking logics they build longitudinally from their learning experiences.  相似文献   

10.
11.
This study investigated the favorite subject to teach and enjoyment of teaching of 490 elementary school teachers (K–5) from two rural school districts in the southeastern United States. Reading and language arts were consistently ranked among the favorite and most enjoyed subjects to teach, whereas science and writing were consistently ranked among the least favorite and least enjoyed subjects to teach. However, the complexity of teachers' attitudes was evidenced by interactions with grade level and attitude measure that existed with mathematics, writing, and social studies. Further, primary-level teachers, compared to upper elementary teachers, were found to be more subject generalists in terms of their relative enjoyment for teaching all subjects. Implications for teacher preparation and policies related to elementary school teaching assignments are discussed.  相似文献   

12.
This study explored whether early childhood preservice teachers' concerns about teaching nature of science (NOS) and their intellectual levels influenced whether and how they taught NOS at the preschool and primary (K‐3) levels. We used videotaped classroom observations and lesson plans to determine the science instructional practices at the preschool and primary levels, and to track whether and how preservice teachers emphasized NOS. We used the Stages of Concern Questionnaire (SOCQ) pre‐ and postinternship to determine concerns about NOS instruction, and the Learning Context Questionnaire (LCQ) to determine intellectual levels. We found that neither concerns about teaching NOS nor intellectual level were related to whether and how the preservice teachers emphasized NOS; however, we found that all preservice early childhood teachers began their internships with NOS concern profiles of “worried.” Two preservice teachers' NOS concerns profiles changed as a result of their internships; one to “cooperator” and one to “cooperator/improver.” These two preservice teachers had cooperating teachers who were aware of NOS and implemented it in their own science instruction. The main factors that hindered or facilitated teaching NOS for these preservice teachers were the influence of the cooperating teacher and the use of the science curriculum. The preservice teacher with the cooperating teacher who understood and emphasized NOS herself and showed her how to modify the curriculum to include NOS, was able to explicitly teach NOS to her students. Those in classrooms whose cooperating teachers did not provide support for NOS instruction were unable to emphasize NOS. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:213–233, 2010  相似文献   

13.
Understanding the interaction between internally constructed and externally imposed aspects of the teaching context may be the missing link between calls for school reform and teachers' interpretation and implementation of that reform. Although the context of the local school culture has a profound impact on teachers, there are other external forces that are specifically aimed at influencing teachers' pedagogical and curricular decisions. These externally imposed aspects of context include some of the existing tools of reform, such as national standards, mandated state core curricula, and related criterion‐referenced testing. However, little is known about how these reform tools impact teachers' thinking about science and science teaching or how teachers respond to such tools. This study examined the interactions between individual teachers' beliefs about teaching and learning science in elementary school and the tools of reform that are imposed upon them. Comparative case studies were conducted in which two elementary teachers' science instruction, teaching context, and related beliefs were examined, described, and analyzed. In this study, the teachers' fundamental beliefs about science and what it means to teach and learn science influenced their interpretations of the sometimes contradictory messages of reform as they are represented in the standards, mandated curriculum, and end‐of‐level tests. Suggestions about what these findings mean for needed aspects of teacher professional development are offered. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 396–423, 2007  相似文献   

14.
This study examined the pedagogical content knowledge of experienced and novice chemical demonstrators. It specifically delineates the nature of the declarative knowledge associated with science teachers' pedagogical content knowledge. Science teachers who (1) teach abstract concepts in chemistry, (2) have a strong interest in using demonstrations as a science teaching strategy, and (3) have high and low levels of experience conducting chemical demonstrations participated in the study. Clinical interviews were used to probe teachers' pedagogical content knowledge. The findings suggest that the experienced chemical demonstrators possess a greater representational and adaptational repertoire for teaching fundamental concepts in chemistry than novices. They also appeared to be more cognizant of the complexity of chemical demonstrations, how these complexities may interfere with learning, and how simplified variations of chemical demonstrations can promote concept learning. The implications for teacher education programs are discussed.  相似文献   

15.
This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7–9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.  相似文献   

16.
According to the literature, in the 1980s the intended science curriculum exhibited a worldwide movement toward a curriculum for all, with a more contextually embedded approach. In writings about science teaching pedagogy, a trend can be observed to consider seriously students' conceptions, based on the premises of constructivism. This article examines consequences of these trends for teacher behavior and concludes that classes should become more student centered. In terms of the model for interpersonal teacher behavior (Wubbels & Levy, 1993), teachers must give their students more responsibility and act in a more understanding way. It is to be expected that teachers' beliefs and opinions have to change before this trend can be implemented in the classroom. We have therefore tested whether teachers' opinions about objectives and content of physics education, on the one hand, and the implemented curriculum, particularly teachers' interpersonal behavior, on the other, display the same trend observed in the intended curriculum. In 1984 and 1993, data on students' perceptions of their teachers' behavior were gathered from ninth-grade students of a random sample of Dutch physics teachers. Data on the teachers' self-perceptions of their behavior and their opinions about physics education also were included. The results show that teachers were more in favor of realistic teaching content in 1993 than in 1984, a shift that is in line with the trend in the intended curriculum. Students' perceptions indicated clearly that Dutch teachers behaved less dominantly and more cooperatively in 1993 than in 1984. © 1997 John Wiley & Sons, Inc. J Res Sci Teach 34: 447–466, 1997.  相似文献   

17.
Abstract

The research reported on in this article was conducted to determine if student teachers enrolled in a Bachelor of Education programme at a South African University are able to integrate science and technology in their teaching. The participants were a cohort of students registered for a course aimed at preparing them to teach grades 4 to 6 in the primary school. The theoretical framework applied in the study is Rogan's Zone of feasible Innovation (ZFI) which uses the analogy that curriculum strategies are good when they proceed just ahead of current practice. Students' understanding of integration of two learning areas was compared to their knowledge base. The findings suggest that students who have very little knowledge of science and/or technology have difficulty in understanding what the scientific and technological processes mean and without this understanding are unable to integrate science and technology effectively in their teaching. It is recommended that the B.Ed programme at this university focuses more on providing opportunities for students to acquire sound knowledge of the two disciplines before attempting any form of integration.  相似文献   

18.
The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.  相似文献   

19.
The main purpose of this study was to concurrently investigate Taiwanese high-school students' and their science teachers' conceptions of learning science (COLS) and conceptions of science assessment (COSA). A total of 1,048 Taiwanese high-school students and their 59 science teachers were invited to fill out two questionnaires assessing their COSA and COLS. The main results indicated that, first, although a handful of different patterns occurred, students and teachers were found to have similar COLS–COSA patterns. In general, students and teachers with COSA as reproducing knowledge and rehearsing tended to possess lower-level COLS, such as learning science as memorizing, testing, and calculating and practicing. In contrast, if students and teachers viewed science assessment as improving learning and problem-solving, they would be prone to regard science learning as increase of knowledge, applying, and understanding and seeing in a new way. However, the students' conceptions did not align with those of the teachers' in certain aspects. The students tended to regard science learning and assessment at a superficial level (COLS as ‘memorizing’, ‘testing’, and ‘calculating and practicing’ and COSA as ‘reproducing knowledge’), while the teachers’ conceptions were at a more sophisticated level (COLS as ‘application’ and ‘understanding and seeing in a new way’ and COSA as ‘improving learning’). It is evident that a dissonance exists between the students' and teachers' COLS and COSA. Based on the results, practical implications and suggestions for future research are discussed.  相似文献   

20.
Since science became part of the core curriculum in England and Wales for children aged five upwards, primary school teachers have moved from widespread diffidence to positions of some confidence and success in teaching it. In the process, their views of the nature of science and the purposes of teaching it can be expected to have developed. The importance of the teacher in relation to the quality of students' learning, and to the ideas about and orientations towards a subject that students develop, is well documented. There are good reasons to believe that teachers' views of the nature of science form part of a ‘hidden curriculum’ in their science teaching: thus, an understanding of them is necessary to an understanding of learners' experiences of science teaching. The research reported explored such views through both case study and survey methodologies. The case studies showed the depth and subtlety of some teachers' views of science. The survey data yielded six factors, explaining 82% of the variance in respondents' views of science, provisionally named scientism, naive empiricism, ‘new-age-ism’, constructivism, pragmatism and scepticism. The views of science expressed by teachers in interview, and those inferred from and made explicit in their practice, were in most cases consistent with their positions on these factors. These enable interesting insights into the representations of science communicated by primary teachers in their science teaching, which could inform curriculum development in relation to the nature of science, at both primary and secondary levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号