首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.  相似文献   

2.
为研究钢筋锈蚀后再生混凝土框架节点的破坏特征和抗震性能,对钢筋未锈蚀、锈蚀而保护层未开裂、平均锈胀裂缝宽度为0.2mm及平均锈胀裂缝宽度为0.4mm四种情况下的再生混凝土及普通混凝土框架边节点,进行了低周反复荷载对比试验;观察节点的受力过程及破坏形态,分析试件的荷载一位移滞回曲线、承载能力、强度和刚度退化、延性以及耗能能力等力学特性.结果表明:相同锈蚀程度下,再生混凝土节点的强度比普通混凝土节点小,再生混凝土节点的刚度退化比普通混凝土节点严重,再生混凝土节点表现出更好的延性,再生混凝土耗能较普通混凝土耗能弱;随着钢筋锈蚀程度的增加,再生混凝土与普通混凝土节点的强度降低,刚度减小,延性减小,耗能能力降低.  相似文献   

3.
Prestressed steel ultrahigh-strength reinforced concrete (PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, load-deflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.  相似文献   

4.
为实现装配式结构震损后能快速修复以恢复使用功能,提出一种带可恢复功能节点的装配式框架结构体系。利用ABAQUS 有限元软件对可恢复功能节点进行数值模拟,探讨可恢复功能节点的作用机理,并将可恢复功能节点布置到装配式框架结构中形成可恢复功能装配式框架结构,考察整体结构的受力机理,可更换耗能铰、装配式节点核心区与梁柱部件的失效演化规律。结果表明,节点的失效主要是由于可恢复功能节点在削弱钢板处的损伤累积引起的断裂导致?与现浇混凝土框架及节点加强型现浇混凝土框架相比,可恢复功能装配式框架的承载能力更高、延性更好,通过可更换耗能铰的塑性变形耗散能量大幅度提高了结构的耗能能力,且结构的损伤破坏集中在削弱钢板上,有效地避免了预制梁柱和节点核心区的损伤。震后通过更换损伤耗能元件即可恢复结构的使用功能,实现了损伤可控和震后功能可恢复的抗震设防理念,具有广泛的应用前景。  相似文献   

5.
To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.  相似文献   

6.
A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic performance. The specimen was a three-storey single-bay frame, which was composed of H-section steel columns and composite beams, and was assembled by bolted height-adjustable steel beam-to-column connections (BHA connections). Beam-only-connected SPSWs were selected as lateral load resisting members. The specimen was subjected to four ground motions of progressively increasing intensity. The results showed that: (1) beam-only-connected SPSWs provided sufficient lateral load resistance, lateral stiffness, and energy dissipation capacity to the fabricated frame via the tension field action developed in their infill panels; (2) the fabricated frame, assembled by BHA connections, exhibited substantial redundancy and good ductility; (3) an undesirable failure mode of the fabricated frame, in huge earthquakes, included severe cracking in composite beams and block shear failure in SPSWs’ connections; (4) the inter-storey shear force distribution determined by ASCE/SEI 7-10 was verified with experimental data.  相似文献   

7.
Finite element analysis and parametric studies were performed to investigate the flexural capacity of the panel zone of diaphragm-through joints between concretefilled square steel tubular columns and H-shaped steel beams.Through the comparisons of failure modes,load–displacement curves,and bearing capacity,it was found that the flexural capacity of the panel zone of diaphragmthrough joints was determined by the tensile action and influence of the web of H-shaped steel beams,and the axial load should be taken into account.The steel tube and the diaphragm were the major parts of the joint that resisted the bending moment.The contribution of in-filled concrete had little influence on the flexural capacity of the panel zone of the joint and could be neglected.According to the results of these numerical studies,a formula that considered the influence of the web of H-shaped steel beams and the axial load was developed based on the yield lines in the diaphragm and the steel tube.The results of the proposed formula were in good agreement with the numerical data of this investigation.  相似文献   

8.
在冲击荷载作用下,钢框架结构的动态响应是一个复杂的非线性过程。运用ANSYS/LS-DYNA建立了钢框架的三维模型,对冲击荷载作用下钢框架的动态响应和破坏形态进行研究。采取多点积分算法,有效避免沙漏问题,保证计算结果精确。以冲击块与钢框架的碰撞冲击为例,研究了冲击速度、冲击块质量、冲击位置等参数对钢框架在横向冲击作用下动力响应的影响,并分析冲击荷载下钢框架的破坏形态。结果表明:冲击块的质量、速度、冲击位置的增加都会不同程度地加剧钢框架的动态响应;在冲击作用下,高应变主要出现在被冲击柱子的冲击区域、柱脚处和梁柱节点处;冲击荷载下钢框架的破坏形态为整个框架发生侧移,受冲击柱在冲击处翼缘出现局部屈曲,受冲击区域的截面发生弯扭,未受冲击柱出现倾斜。  相似文献   

9.
介绍了钢管混凝土柱-环梁中节点(环梁节点)在静载和低周反复荷载作用下的设计方法,其可靠性得到试验数据的证实。结果显示,在地震区推广应用钢管混凝土柱-钢筋混凝土环梁节点的结构体系具有较强的可行性。  相似文献   

10.
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio;the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns.  相似文献   

11.
钢管混凝土柱-环扁梁中节点静载试验研究   总被引:5,自引:0,他引:5  
介绍了钢管混凝土柱-钢筋混凝土环扁梁中节点的构造和基本受力机理,以及环梁、环扁粱节点的静载试验结果.试验结果表明,通过合理设计,环梁、环扁梁节点能有效地传递框架梁、扁梁梁端的剪力和弯矩,具有良好的变形能力.  相似文献   

12.
Corrosion is one of the main causes of deterioration in steel structures. Loss of thickness in flanges and web of corroded steel beams leads to reduction in section properties which can reduce the lateral torsional buckling capacity of the member. In this paper, thickness loss data were compiled from four samples of corrosion damaged I-beams removed from a petro-chemical plant. Visual examination of the four corroded beams showed that they were corroded uniformly. To improve the accuracy of the results, a large number of measurements for surface roughness were taken for each beam, totally 770 values to obtain the average thickness of flanges and web of each beam. The data was used to develop a corrosion decay model in order to calculate the percentage remaining lateral torsional buckling capacity of long and short span beams which are laterally unrestrained. To estimate the percentage of remaining lateral torsional buckling capacity in the corroded damaged I-beams, the readily available minimum curves for different types of universal beams in conj unction with information on the thickness loss were used. The results can be used by practicing engineers for better estimation on the service life of deteriorated steel structures.  相似文献   

13.
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested.  相似文献   

14.
本文通过转换梁及其下部柱中设与不设型钢骨架两种方案托柱式底层大空间转换层结构模型的对比试验,系统研究了其在垂直荷载和水平荷载作用下的受力性能、位移延性和破坏机制等.结果表明:型钢混凝土转换梁结构具有良好的受力及抗震性能,并提出了有关设计建议.  相似文献   

15.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

16.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

17.
The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated load(scale 1∶3). The failure characteristics, hysteretic behavior, rigidity degeneracy, deflection ductility and energy-dissipation capacity of the three specimens were compared. The test results reveal that chemicallybonded rebar technique can meet the requirements of storey-adding engineering. The carrying capacity, the deflection ductility, the energy-dissipating capacity and seismic performance of the light steel storey-adding frame are higher than those of the integral concreting frame, and they are the highest in the storey-adding frame strengthened with CFRP.  相似文献   

18.
文章对抗震设防区框架结构梁端剪力值如何结合斜截面受剪承载力来正确确定问题进行了探讨.  相似文献   

19.
The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element. The critical equations for shear and bending failure are derived respectively. Pressureimpulse diagrams are accordingly developed to assess damage of the buried structures against internal blast load. Comparison is done to show influences of soil-structure interaction and shear-to-bending strength ratio of a structural element. A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.  相似文献   

20.
Based on the investigation of fiber influence on workability of self-compacting concrete (SCC), tests were carried out on two series of SCC rectangular simply supported beams, which were made of hooked steel fibers reinforced concrete with or without stirrups, subjected to four-point symmetrically placed vertical loads. The major test variables are steel fiber contents and stirrup ratios. The results indicate that the ultimate load significantly increases with the increase of fiber content; the addition of ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号