首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
This is an editorial report on the outcomes of an international conference sponsored by a grant from the National Science Foundation (NSF) (REESE-1205273) to the School of Education at Boston University and the Center for Philosophy and History of Science at Boston University for a conference titled: How Can the History and Philosophy of Science Contribute to Contemporary US Science Teaching? The presentations of the conference speakers and the reports of the working groups are reviewed. Multiple themes emerged for K-16 education from the perspective of the history and philosophy of science. Key ones were that: students need to understand that central to science is argumentation, criticism, and analysis; students should be educated to appreciate science as part of our culture; students should be educated to be science literate; what is meant by the nature of science as discussed in much of the science education literature must be broadened to accommodate a science literacy that includes preparation for socioscientific issues; teaching for science literacy requires the development of new assessment tools; and, it is difficult to change what science teachers do in their classrooms. The principal conclusions drawn by the editors are that: to prepare students to be citizens in a participatory democracy, science education must be embedded in a liberal arts education; science teachers alone cannot be expected to prepare students to be scientifically literate; and, to educate students for scientific literacy will require a new curriculum that is coordinated across the humanities, history/social studies, and science classrooms.  相似文献   

7.
A response to Maskiewicz and Lineback''s essay in the September 2013 issue of CBE-Life Sciences Education.Dear Editor:Maskiewicz and Lineback (2013) have written a provocative essay about how the term misconceptions is used in biology education and the learning sciences in general. Their historical perspective highlights the logic and utility of the constructivist theory of learning. They emphasize that students’ preliminary ideas are resources to be built upon, not errors to be eradicated. Furthermore, Maskiewicz and Lineback argue that the term misconception has been largely abandoned by educational researchers, because it is not consistent with constructivist theory. Instead, they conclude, members of the biology education community should speak of preconceptions, naïve conceptions, commonsense conceptions, or alternative conceptions.We respectfully disagree. Our objections encompass both the semantics of the term misconception and the more general issue of constructivist theory and practice. We now address each of these in turn. (For additional discussion, please see Leonard, Andrews, and Kalinowski , “Misconceptions Yesterday, Today, and Tomorrow,” CBE—Life Sciences Education [LSE], in press, 2014.)Is misconception suitable for use in scholarly discussions? The answer depends partly on the intended audience. We avoid using the term misconception with students, because it could be perceived as pejorative. However, connotations of disapproval are less of a concern for the primary audience of LSE and similar journals, that is, learning scientists, discipline-based education researchers, and classroom teachers.An additional consideration is whether misconception is still used in learning sciences outside biology education. Maskiewicz and Lineback claim that misconception is rarely used in journals such as Cognition and Instruction, Journal of the Learning Sciences, Journal of Research in Science Teaching, and Science Education, yet the term appears in about a quarter of the articles published by these journals in 2013 (National Research Council, 2012 ).

Table 1.

Use of the term misconception in selected education research journals in 2013
Journal (total articles published in 2013a)Articles using misconception (“nondisapproving” articles/total articles)Articles using other terms
LSE (59)23/24Alternative conception (4)
Commonsense conception (2)
Naïve conception (1)
Preconception (4)
Cognition and Instruction (16)3/3None
Journal of the Learning Sciences (17)4/4Commonsense science knowledge (1)
Naïve conception (1)
Prior conception (1)
Journal of Research in Science Teaching (49)11/13Commonsense idea (1)
Naïve conception (1)
Preconception (5)
Science Education (36)10/11Naïve conception (1)
Open in a separate windowaAs of November 25, 2013. Does not include very short editorials, commentaries, corrections, or prepublication online versions.A final consideration is whether any of the possible alternatives to misconception are preferable. We feel that the alternatives suggested by Maskiewicz and Lineback are problematic in their own ways. For example, naïve conception sounds more strongly pejorative to us than misconception. Naïve conception and preconception also imply that conceptual challenges occur only at the very beginning stages of learning, even though multiple rounds of conceptual revisions are sometimes necessary (e.g., see figure 1 of Andrews et al., 2012 ) as students move through learning progressions. Moreover, the terms preferred by Maskiewicz and Lineback are used infrequently (Smith et al. (1993) that they object to statements that misconceptions should be actively confronted, challenged, overcome, corrected, and/or replaced (Smith et al. (1993) argue on theoretical grounds that confrontation does not allow refinement of students’ pre-existing, imperfect ideas; instead, the students must simply choose among discrete prepackaged ideas. From Maskiewicz and Lineback''s perspective, the papers listed in Maskiewicz and Lineback (2013) as using outdated views of misconceptionsa
ArticleExample of constructivist languageExample of language suggesting confrontation
Andrews et al., 2011 “Constructivist theory argues that individuals construct new understanding based on what they already know and believe.… We can expect students to retain serious misconceptions if instruction is not specifically designed to elicit and address the prior knowledge students bring to class” (p. 400).Instructors were scored for “explaining to students why misconceptions were incorrect” and “making a substantial effort toward correcting misconceptions” (p. 399). “Misconceptions must be confronted before students can learn natural selection” (p. 399). “Instructors need to elicit misconceptions, create situations that challenge misconceptions.” (p. 403).
Baumler et al., 2012 “The last pair [of students]''s response invoked introns, an informative answer, in that it revealed a misconception grounded in a basic understanding of the Central Dogma” (p. 89; acknowledges students’ useful prior knowledge).No relevant text found
Cox-Paulson et al., 2012 No relevant text foundThis paper barely mentions misconceptions, but cites sources (Phillips et al., 2008 ; Robertson and Phillips, 2008 ) that refer to “exposing,” “uncovering,” and “correcting” misconceptions.
Crowther, 2012 “Prewritten songs may explain concepts in new ways that clash with students’ mental models and force revision of those models” (p. 28; emphasis added).“Songs can be particularly useful for countering … conceptual misunderstandings.… Prewritten songs may explain concepts in new ways that clash with students’ mental models and force revision of those models” (p. 28).
Kalinowski et al., 2010 “Several different instructional approaches for helping students to change misconceptions … agree that instructors must take students’ prior knowledge into account and help students integrate new knowledge with their existing knowledge” (p. 88).“One strategy for correcting misconceptions is to challenge them directly by ‘creating cognitive conflict,’ presenting students with new ideas that conflict with their pre-existing ideas about a phenomenon… In addition, study of multiple examples increases the chance of students identifying and overcoming persistent misconceptions” (p. 89).
Open in a separate windowaWhile these papers do not adhere to Smith et al.''s (1993) version of constructivism, they do adhere to the constructivist approach that advocates cognitive dissonance.Our own stance differs from that of Maskiewicz and Lineback, reflecting a lack of consensus within constructivist theory. We agree with those who argue that, not only are confrontations compatible with constructivist learning, they are a central part of it (e.g., Gilbert and Watts, 1983 ; Hammer, 1996 ). We note that Baviskar et al. (2009) list “creating cognitive dissonance” as one of the four main tenets of constructivist teaching. Their work is consistent with research showing that focusing students on conflicting ideas improves understanding more than approaches that do not highlight conflicts (e.g., Kowalski and Taylor, 2009 ; Gadgil et al., 2012 ). Similarly, the Discipline-Based Education Research report (National Research Council, 2012 , p. 70) advocates “bridging analogies,” a form of confrontation, to guide students toward more accurate ways of thinking. Therefore, we do not share Maskiewicz and Lineback''s concerns about the papers listed in Price, 2012 ). We embrace collegial disagreement.Maskiewicz and Lineback imply that labeling students’ ideas as misconceptions essentially classifies these ideas as either right or wrong, with no intermediate stages for constructivist refinement. In fact, a primary goal of creating concept inventories, which use the term misconception profusely (e.g., Morris et al., 2012 ; Prince et al., 2012 ), is to demonstrate that learning is a complex composite of scientifically valid and invalid ideas (e.g., Andrews et al., 2012 ). A researcher or instructor who uses the word misconceptions can agree wholeheartedly with Maskiewicz and Lineback''s point that misconceptions can be a good starting point from which to develop expertise.As we have seen, misconception is itself fraught with misconceptions. The term now embodies the evolution of our understanding of how people learn. We support the continued use of the term, agreeing with Maskiewicz and Lineback that authors should define it carefully. For example, in our own work, we define misconceptions as inaccurate ideas that can predate or emerge from instruction (e.g., Andrews et al., 2012 ). We encourage instructors to view misconceptions as opportunities for cognitive dissonance that students encounter as they progress in their learning.  相似文献   

8.
In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers’ inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.Current discussion about educational reform among business leaders, politicians, and educators revolves around the idea students need “21st century skills” to be successful today (Rotherham and Willingham, 2009 ). Proponents argue that to be prepared for college and to be competitive in the 21st-century workplace, students need to be able to identify issues, acquire and use new information, understand complex systems, use technologies, and apply critical and creative thinking skills (US Department of Labor, 1991 ; Bybee et al., 2007 ; Conley, 2007 ). Advocates of 21st-century skills favor student-centered methods—for example, problem-based learning and project-based learning. In science education, inquiry-based approaches to teaching and learning provide one framework for students to build these critical-thinking and problem-solving skills (American Association for the Advancement of Science [AAAS], 1993 ; National Research Council [NRC], 2000 ; Capps et al., 2012 ).Unfortunately, in spite of the central role of inquiry in the national and state science standards, inquiry-based instruction is rarely implemented in secondary classrooms (Weiss et al., 1994 ; Bybee, 1997 ; Hudson et al., 2002 ; Smith et al., 2002 ; Capps et al., 2012 ). Guiding a classroom through planning, executing, analyzing, and evaluating open-ended investigations requires teachers to have sufficient expertise, content knowledge, and self-confidence to be able to maneuver through multiple potential roadblocks. Researchers cite myriad reasons for the lack of widespread inquiry-based instruction in schools: traditional beliefs about teaching and learning (Roehrig and Luft, 2004 ; Saad and BouJaoude, 2012 ), lack of pedagogical skills (Shulman, 1986 ; Adams and Krockover, 1997 ; Crawford, 2007 ), lack of time (Loughran, 1994 ), inadequate knowledge of the practice of science (Duschl, 1987 ; DeBoer, 2004 ; Saad and BouJaoude, 2012 ), perceived time constraints due to high-stakes testing, and inadequate preparation in science (Krajcik et al., 2000 ). Yet teachers are necessarily at the center of reform, as they make instructional and pedagogical decisions within their own classrooms (Cuban, 1990 ). Given that effectiveness of teachers’ classroom practices is critical to the success of current science education reforms, teacher professional development has been an ongoing focus for promoting educational reform (Corcoran, 1995 ; Corcoran et al., 1998 ).A review of the education research literature yields an extensive knowledge base in “best practices” for professional development (Corcoran, 1995 ; NRC, 1996 ; Loucks-Horsley and Matsumoto, 1999 ; Loucks-Horsley et al., 2009 ; Haslam and Fabiano, 2001 ; Wei et al., 2010 ). However, in spite of a strong consensus on what constitutes best practices for professional development (Desimone, 2009 ; Wei et al., 2010 ), relatively little systematic research has been conducted to support this consensus (Garet et al., 2001 ). Similarly, when specifically considering the science education literature, several studies have been published on the impact of teacher professional development on inquiry-based practices (e.g., Supovitz and Turner, 2000 ; Banilower et al., 2007 ; Capps et al., 2012 ). Unfortunately, these studies usually rely on teacher self-report data; few studies have reported empirical evidence of what actually occurs in the classroom following a professional development experience.Thus, in this study, we set out to determine through observational empirical data whether documented effective professional development does indeed change classroom practices. In this paper, we describe an extensive professional development experience for middle school biology teachers designed to develop teachers’ neuroscience content knowledge and inquiry-based pedagogical practices. We investigate the impact of professional development delivered collaboratively by experts in science and pedagogy on promoting inquiry-based instruction and an investigative classroom culture. The study was guided by the following research questions:
  1. Were teachers able to increase their neuroscience content knowledge?
  2. Were teachers able to effectively implement student-centered reform or inquiry-based pedagogy?
  3. Would multiple years of professional development result in greater changes in teacher practices?
Current reforms in science education require fundamental changes in how students are taught science. For most teachers, this requires rethinking their own practices and developing new roles both for themselves as teachers and for their students (Darling-Hammond and McLaughlin, 1995 ). Many teachers learned to teach using a model of teaching and learning that focuses heavily on memorizing facts (Porter and Brophy, 1988 ; Cohen et al., 1993 ; Darling-Hammond and McLaughlin, 1995 ), and this traditional and didactic model of instruction still dominates instruction in U.S. classrooms. A recent national observation study found that only 14% of science lessons were of high quality, providing students an opportunity to learn important science concepts (Banilower et al., 2006 ). Shifting to an inquiry-based approach to teaching places more emphasis on conceptual understanding of subject matter, as well as an emphasis on the process of establishing and validating scientific concepts and claims (Anderson, 1989 ; Borko and Putnam, 1996 ). In effect, professional development must provide opportunities for teachers to reflect critically on their practices and to fashion new knowledge and beliefs about content, pedagogy, and learners (Darling-Hammond and McLaughlin, 1995 ; Wei et al., 2010 ). If teachers are uncomfortable with a subject or believe they cannot teach science, they may focus less time on it and impart negative feelings about the subject to their students. In this way, content knowledge influences teachers’ beliefs about teaching and personal self-efficacy (Gresham, 2008 ). Personal self-efficacy was first defined as “the conviction that one can successfully execute the behavior required to produce the outcomes” (Bandura, 1977 , p.193). Researchers have reported self-efficacy to be strongly correlated with teachers’ ability to implement reform-based practices (Mesquita and Drake, 1994 ; Marshall et al., 2009 ).Inquiry is “a multifaceted activity that involves making observations, posing questions, examining books and other sources of information, planning investigations, reviewing what is already known in light of evidence, using tools to gather, analyze and interpret data, proposing answers, explanations and predictions, and communicating the results” (NRC, 1996 , p. 23). Unfortunately, most preservice teachers rarely experience inquiry-based instruction in their undergraduate science courses. Instead, they listen to lectures on science and participate in laboratory exercises with guidelines for finding the expected answer (Gess-Newsome and Lederman, 1993 ; DeHaan, 2005 ). As such, teachers’ knowledge and beliefs about teaching and learning were developed over the many years of their own educations, through “apprenticeship of observation” (Lortie, 1975 ), in traditional lecture-based settings that they then replicate in their own classrooms. To support the implementation of inquiry in K–12 classrooms, teachers need firsthand experiences of inquiry, questioning, and experimentation within professional development programs (Gess-Newsome, 1999 ; Supovitz and Turner, 2000 ; Capps et al., 2012 ).A common criticism of professional development activities is that they are too often one-shot workshops with limited follow-up after the workshop activities (Darling-Hammond, 2005 ; Wei et al., 2010 ). The literature on teacher learning and professional development calls for professional development that is sustained over time, as the duration of professional development is related to the depth of teacher change (Shields et al., 1998 ; Weiss et al., 1998 ; Supovitz and Turner, 2000 ; Banilower et al., 2007 ). If the professional development program is too short in duration, teachers may dismiss the suggested practices or at best assimilate teaching strategies into their current repertoire with little substantive change (Tyack and Cuban, 1995 ; Coburn, 2004 ). For example, Supovitz and Turner (2000 ) found that sustained professional development (more than 80 h) was needed to create an investigative classroom culture in science, as opposed to small-scale changes in practices. Teachers need professional development that is interactive with their teaching practices; in other words, professional development programs should allow time for teachers to try out new practices, to obtain feedback on their teaching, and to reflect on these new practices. Not only is duration (total number of hours) of professional development important, but also the time span of the professional development experience (number of years across which professional hours are situated) to allow for multiple cycles of presentation and reflection on practices (Blumenfeld et al., 1991 ; Garet et al., 2001 ). Supovitz and Turner''s study (2000) suggests that it is more difficult to change classroom culture than teaching practices; the greatest changes in teaching practices occurred after 80 h of professional development, while changes in classroom investigative culture did not occur until after 160 h of professional development.Finally, research indicates that professional development that focuses on science content and how children learn is important in changing teaching practices (e.g., Corcoran, 1995 ; Desimone, 2009 ), particularly when the goal is the implementation of inquiry-like instruction designed to improve students’ conceptual understanding (Fennema et al., 1996 ; Cohen and Hill, 1998 ). The science content chosen for the professional development series described in this study was neuroscience. This content is relevant for both middle and high school science teachers and has direct connections to standards. It also is unique in that it encompasses material on the neurological basis for learning, thus allowing discussions about student learning to occur within both a scientific and pedagogical context. As a final note, it is rare for even a life science teacher to have taken any coursework in neuroscience. The inquiry-based lessons and experiments encountered by the teachers during the professional development provide an authentic learning experience, allowing teachers to truly inhabit the role of a learner in an inquiry-based setting.  相似文献   

9.
Blacks, Hispanics, and American Indians/Alaskan Natives are underrepresented in science and engineering fields. A comparison of race–ethnic differences at key transition points was undertaken to better inform education policy. National data on high school graduation, college enrollment, choice of major, college graduation, graduate school enrollment, and doctoral degrees were used to quantify the degree of underrepresentation at each level of education and the rate of transition to the next stage. Disparities are found at every level, and their impact is cumulative. For the most part, differences in graduation rates, rather than differential matriculation rates, make the largest contribution to the underrepresentation. The size, scope, and persistence of the disparities suggest that small-scale, narrowly targeted remediation will be insufficient.Most scientists and engineers take great pride in their reliance on logic and empirical evidence in decision making, and they reject the use of emotional, parochial, and irrational criteria. Prejudices of any sort are abjured. The prevalence of laboratory personnel and research collaborators from diverse national origins is often cited as an example of this meritocratic ideal. Therefore, the U.S. biomedical research community was shocked when a study revealed that Black Americans and other groups were substantially underrepresented in the receipt of grants from the National Institutes of Health (NIH), even after other correlates of success were controlled (Ginther et al., 2011 ). This picture clashed dramatically with the standards the community claimed. In the wake of this revelation, NIH created a high-level advisory group to examine the situation and make recommendations to address it (NIH, 2012 ).Concern about underrepresentation of Black Americans and other race–ethnic groups in science is not new (Melnick and Hamilton, 1977 ), and many attempts have been made to ameliorate or eliminate the gaps. While there have been some gains—underrepresented racial minority (URM)1 students rose from 2% of the biomedical graduate students to more than 11% since 1980 (National Research Council, 2011 )—disparities remain in all fields of science and engineering at all education levels and career stages (National Academy of Science, 2011 ).Given the limited progress in correcting this situation, it is essential to have a better understanding of the origin and extent of the problem. Especially in the current fiscal climate, with insufficient funding for education programs, interventions must be accurately targeted and appropriate to reach their goals. How large are the race–ethnic differences in science enrollments at each level of education? Are there general patterns that can help guide policy? Using data from 2008 and 2009, a recent National Science Foundation (NSF) report illustrates the underrepresentation of Blacks, Hispanics, and American Indians/Alaskan Natives at various education levels (NSF, 2011a ). While informative and illustrative of the extent of the problem, this single-year, cross-sectional perspective does not capture the conditions encountered by recent doctorate earners as they progressed through earlier stages in their education. Looking at graduation rates in the life sciences, Ginther et al. (2009) found that minority participation is increasing in biology, but minority students are not transitioning between milestones in the same proportions as Whites.  相似文献   

10.
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach’s Mechanics when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many others in several generations (James Conant, Thomas Kuhn, Gerald Holton, etc.). What were the origins of these ideas in Mach and what can this origin tell us about the history of science and science education nowadays? Which ideas proved to be successful and which ones need to be improved upon? The following article will elaborate the epistemological questions, which Charles Darwin’s “Origin” raised concerning human knowledge and scientific knowledge and which led Mach to adapt the concept of what is “empirical” in contrast to metaphysical a priori assumptions a second time after Galileo. On this basis Sarton proposed “genesis and development” as the major goal of his journal Isis. Mach had elaborated this epistemology in La Connaissance et l’Erreur (Knowledge and Error), which Sarton read in 1911 (Hiebert in Knowledge and error. Reidel, Dordrecht, 1976; de Mey in George Sarton centennial. Communication & Cognition, Ghent, pp. 3–6, 1984). Accordingly for Sarton, history becomes not only a subject of science, but a method of science education. Culture—and science as part of culture—is a result of a genetic process. History of science shapes and is shaped by science and science education in a reciprocal process. Its epistemology needs to be adapted to scientific facts and the philosophy of science. Sarton was well aware of the need to develop the history of science and the philosophy of science along the lines of this reciprocal process. It was a very fruitful basis, but a specific part of it Sarton did not elaborate further, namely the erkenntnis-theory and psychology of science education. This proved to be a crucial missing element for all of science education in Sarton’s succession, especially in the US. Looking again at the origins of the central questions in the thinking of Mach, which provided the basis and gave rise to Sarton’s research program, will help in resolving current epistemic and methodological difficulties, contradictions and impasses in science education influenced by Sarton. The difficulties in science education will prevail as long as the omissions from their Machian origins are not systematically recovered and reintegrated.  相似文献   

11.
Course-based undergraduate research experiences (CUREs) may be a more inclusive entry point to scientific research than independent research experiences, and the implementation of CUREs at the introductory level may therefore be a way to improve the diversity of the scientific community.The U.S. scientific research community does not reflect America''s diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor''s and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013 ). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009 ). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009 ). Given this need for equity, how can our scientific research community become more inclusive?Current approaches to improving diversity in scientific research focus on graduating more STEM majors, but graduation with a STEM undergraduate degree alone is not ­sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite for admission into graduate school and eventually a career in academia; a quick look at the recommendations for any of the top graduate programs in biology or science career–related websites state an expectation for ­undergraduate research and a perceived handicap if recommendation letters for graduate school do not include a ­discussion of the applicant''s research experience (Webb, 2007 ; Harvard ­University, 2013 ).Independent undergraduate research experiences have been shown to improve the retention of students in scientific research (National Research Council, 2003 ; Laursen et al., 2010 ; American Association for the Advancement of Science, 2011 ; Eagan et al., 2013 ). Participation in independent research experiences has been shown to increase interest in pursuing a PhD (Seymour et al., 2004 ; Russell et al., 2007 ) and seems to be particularly beneficial for students from historically underrepresented backgrounds (Villarejo et al., 2008 ; Jones et al., 2010 ; Espinosa, 2011 ; Hernandez et al., 2013 ). However, the limited number of undergraduate research opportunities available and the structure of how students are selected for these independent research lab positions exclude many students and can perpetuate inequities in the research community. In this essay, we highlight barriers faced by students interested in pursuing an undergraduate independent research experience and factors that impact how faculty members select students for these limited positions. We examine how bringing research experiences into the required course work for students could mitigate these issues and ultimately make research more inclusive.  相似文献   

12.
In this editorial we link the articles published in this Special Issue with the framework from Vision and Change and summarize findings from the editorial process of assembling the Special Issue.The authors of Vision and Change (American Association for the Advancement of Science [AAAS], 2011 ) issued the following call to action to biologists, physicists, chemists, and mathematicians:
To ensure that all students graduate with a basic level of scientific literacy and meet the challenges raised in Bio 2010: Transforming Undergraduate Education for Future Research Biologists (2003), Scientific Foundations for Future Physicians: Report of the AAMC-HHMI Committee (2009), A New Biology for the 21st Century (2009), and similar reports, biologists, physicists, chemists, and mathematicians need to look thoughtfully at ways they can introduce interdisciplinary approaches into their gateway courses. (AAAS, 2011 , p 54)
The articles that comprise this special issue of CBE—Life Sciences Education (LSE) take important steps toward responding to this call by describing teaching and learning at the intersection of biology and physics. Broadly defined, the work aims to encourage the development of genuine interdisciplinary understanding, or “the capacity to integrate knowledge and modes of thinking in two or more disciplines or established areas of expertise to produce a cognitive advancement … in ways that would have been impossible or unlikely through single disciplinary means” (Boix Mansilla and Duraisingh, 2007 , p. 219). Indeed, many of the most exciting recent breakthroughs in the life sciences have occurred at the intersection of these established disciplines. Physical laws help to predict, describe, and explain biological phenomena occurring at molecular to ecosystem levels, and the development of new physical tools helps to visualize these phenomena in new and informative ways. Thus, the Vision and Change report stresses the urgency for undergraduate biology and physics educators to develop, assess, and revise content materials, pedagogical strategies, and epistemological perspectives for encouraging student learning in interdisciplinary biology and physics classes.We received more than 50 abstracts in response to the call for this special issue, and we are pleased to publish 10 Articles, four Essays, and eight Features reflecting the state of educational transformation at the intersection of biology and physics. Several articles describe integration of physics into biology curriculum or biology into physics curriculum that goes beyond simple provision of examples from the respective disciplines (e.g., Batiza et al., Christensen et al., Svoboda Gouvea et al., O’Shea et al., Thompson et al., Breckler et al.). A number of articles address cross-cutting themes, such as problem solving (e.g., Hoskinson et al.) and energy (e.g., Cooper and Klymkowsky, Svoboda Gouvea et al.), the application of mathematical laws to biological phenomena (e.g., Redish and Cooke), epistemology (e.g., Watkins and Elby), and assessment as a powerful tool for driving curriculum change, in this case the integration of physics and biological thinking (e.g., Svoboda Gouvea et al., Momsen et al., Thompson et al.). Other articles reflect research crossing disciplinary boundaries to introduce research approaches (e.g., Watkins and Elby, Momsen et al.) or innovative curriculum models (e.g., Manthey and Brewe, Donovan et al., Thompson et al.) to help students develop reasoning strategies that move beyond traditional disciplinary boundaries. The Hillborn and Friedlander essay highlights potential impacts of cross-disciplinary collaboration in education on the revised Medical College Admission Test.We were pleased by the number of articles coauthored by physicists and biologists working in teams to examine and recommend new directions for the future of biology education. These teams brought a richness and depth of knowledge in both disciplines that made it possible to move instruction and research forward at the intersection of the disciplines. Together, these articles start to provide the evidence base for responding to the calls for interdisciplinary teaching and learning. Further, they provide opportunities to compare and contrast education and epistemologies in biology and physics, allowing for more informed integration of knowledge from these disciplines.  相似文献   

13.
The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education’s most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.  相似文献   

14.
This article examines the validity of the Undergraduate Research Student Self-Assessment (URSSA), a survey used to evaluate undergraduate research (UR) programs. The underlying structure of the survey was assessed with confirmatory factor analysis; also examined were correlations between different average scores, score reliability, and matches between numerical and textual item responses. The study found that four components of the survey represent separate but related constructs for cognitive skills and affective learning gains derived from the UR experience. Average scores from item blocks formed reliable but moderate to highly correlated composite measures. Additionally, some questions about student learning gains (meant to assess individual learning) correlated to ratings of satisfaction with external aspects of the research experience. The pattern of correlation among individual items suggests that items asking students to rate external aspects of their environment were more like satisfaction ratings than items that directly ask about student skills attainment. Finally, survey items asking about student aspirations to attend graduate school in science reflected inflated estimates of the proportions of students who had actually decided on graduate education after their UR experiences. Recommendations for revisions to the survey include clarified item wording and increasing discrimination between item blocks through reorganization.Undergraduate research (UR) experiences have long been an important component of science education at universities and colleges but have received greater attention in recent years, as they have been identified as important ways to strengthen preparation for advanced study and work in the science fields, especially among students from underrepresented minority groups (Tsui, 2007 ; Kuh, 2008 ). UR internships provide students with the opportunity to conduct authentic research in laboratories with scientist mentors, as students help design projects, gather and analyze data, and write up and present findings (Laursen et al., 2010 ). The promised benefits of UR experiences include both increased skills and greater familiarity with how science is practiced (Russell et al., 2007 ). While students learn the basics of scientific methods and laboratory skills, they are also exposed to the culture and norms of science (Carlone and Johnson, 2007 ; Hunter et al., 2007 ; Lopatto, 2010 ). Students learn about the day-to-day world of practicing science and are introduced to how scientists design studies, collect and analyze data, and communicate their research. After participating in UR, students may make more informed decisions about their future, and some may be more likely to decide to pursue graduate education in science, technology, engineering, and mathematics (STEM) disciplines (Bauer and Bennett, 2003 ; Russell et al., 2007 ; Eagan et al. 2013 ).While UR experiences potentially have many benefits for undergraduate students, assessing these benefits is challenging (Laursen, 2015 ). Large-scale research-based evaluation of the effects of UR is limited by a range of methodological problems (Eagan et al., 2013 ). True experimental studies are almost impossible to implement, since random assignment of students into UR programs is both logistically and ethically impractical, while many simple comparisons between UR and non-UR groups of students suffer from noncomparable groups and limited generalizability (Maton and Hrabowski, 2004 ). Survey studies often rely on poorly developed measures and use nonrepresentative samples, and large-scale survey research usually requires complex statistical models to control for student self-selection into UR programs (Eagan et al., 2013 ). For smaller-scale program evaluation, evaluators also encounter a number of measurement problems. Because of the wide range of disciplines, research topics, and methods, common standardized tests assessing laboratory skills and understandings across these disciplines are difficult to find. While faculty at individual sites may directly assess products, presentations, and behavior using authentic assessments such as portfolios, rubrics, and performance assessments, these assessments can be time-consuming and not easily comparable with similar efforts at other laboratories (Stokking et al., 2004 ; Kuh et al., 2014 ). Additionally, the affective outcomes of UR are not readily tapped by direct academic assessment, as many of the benefits found for students in UR, such as motivation, enculturation, and self-efficacy, are not measured by tests or other assessments (Carlone and Johnson, 2007 ). Other instruments for assessing UR outcomes, such as Lopatto’s SURE (Lopatto, 2010 ), focus on these affective outcomes rather than direct assessments of skills and cognitive gains.The size of most UR programs also makes assessment difficult. Research Experiences for Undergraduates (REUs), one mechanism by which UR programs may be organized within an institution, are funded by the National Science Foundation (NSF), but unlike many other educational programs at NSF (e.g., TUES) that require fully funded evaluations with multiple sources of evidence (Frechtling, 2010 ), REUs are generally so small that they cannot typically support this type of evaluation unless multiple programs pool their resources to provide adequate assessment. Informal UR experiences, offered to students by individual faculty within their own laboratories, are often more common but are typically not coordinated across departments or institutions or accountable to a central office or agency for assessment. Partly toward this end, the Undergraduate Research Student Self-Assessment (URSSA) was developed as a common assessment instrument that can be compared across multiple UR sites within or across institutions. It is meant to be used as one source of assessment information about UR sites and their students.The current research examines the validity of the URSSA in the context of its use as a self-report survey for UR programs and laboratories. Because the survey has been taken by more than 3400 students, we can test some aspects of how the survey is structured and how it functions. Assessing the validity of the URSSA for its intended use is a process of testing hypotheses about how well the survey represents its intended content. This ongoing process (Messick, 1993 ; Kane, 2001 ) involves gathering evidence from a range of sources to learn whether validity claims are supported by evidence and whether the survey results can be used confidently in specific contexts. For the URSSA, our method of inquiry focuses on how the survey is used to assess consortia of REU sites. In this context, survey results are used for quality assurance and comparisons of average ratings over years and as general indicators of program success in encouraging students to pursue graduate science education and scientific careers. Our research questions focus on the meaning and reliability of “core indicators” used to track self-reported learning gains in four areas and the ability of numerical items to capture student aspirations for future plans to attend graduate school in the sciences.  相似文献   

15.
16.
With the goal of producing scientifically literate citizens who are able to make informed decisions and reason critically when science intersects with their everyday lives, the National Research Council (NRC) has produced two recent documents that call for a new approach to K-12 science education that is based on scientific practices, crosscutting concepts, and disciplinary core ideas. These documents will potentially influence future state standards and K-12 curricula. Teachers will need support in order to teach science using a practices based approach, particularly if they do not have strong science backgrounds, which is often the case with elementary teachers. This study investigates one cohort (n = 19) of preservice elementary teachers’ ideas about scientific practices, as developed in a one-semester elementary science teaching methods course. The course focused on eight particular scientific practices, as defined by the National Research Council’s A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012). Participants’ written reflections, lesson plans and annotated teaching videos were analyzed in fine detail to better understand their ideas about what it means to engage in each of the practices. The findings suggest that preservice elementary teachers hold promising ideas about scientific practices (such as an emphasis on argumentation and communication between scientists, critical thinking, and answering and asking questions as the goal of science) as well as problematic ideas (including confusion over the purpose of modeling and the process of analysis, and conflating argumentation and explanation building). These results highlight the strengths and limitations of using the Framework (NRC 2012) as an instructional text and the difficulties of differentiating between preservice teachers’ content knowledge about doing the practices and their pedagogical knowledge about teaching the practices.  相似文献   

17.
In this article, I analyse the publish or perish enterprise and in particular the origins of editorial power/knowledge. My actor-network analysis shows how tenure, promotion, and salary decisions apparently unrelated to editorial decisions are important elements that accrue power/knowledge to editors of particular journals. What my actor-network analysis does not show, and which I therefore analyse from a subject-centred perspective, is the other side of editorial power/knowledge: authorial suffering. I suggest that the structure of our science education discipline necessitates a particular commitment to the responsibilities and obligations of editors and reviewers to the authors, particularly the newcomers, and therefore to the production and reproduction of science education.  相似文献   

18.
In educational research, investigators in one field are often ignorant of similar research in other fields. Physics education in particular has undergone dramatic reforms in recent years, all based on insights gained from conducting educational research. Often, pedagogical methods resulting from research in one field can be revised and transferred to another. This paper demonstrates that many methods used in physics and other science programmes<fnr rid="b"> <fn id="b">Throughout this paper, programme will refer to the curricular concept and program will refer to computer programs.</fn> can be adapted to teaching computer science. The author has pursued action research in computer science and implemented ideas from science education, especially from physics education, in teaching computer science classes at a small religious secondary school in the southwestern United States. This paper presents ideas and teaching strategies with the hope of building bridges between computer science education research and other science education research.  相似文献   

19.
This paper explores the science of prevention, with special attention to prevention research and applications in education and psychology, and the importance of prevention in Asian countries. One example that will be highlighted is the recently adopted Korean government policy on Internet addiction which addresses the problem from prevention to treatment. In addition, the paper provides background by summarizing the history of prevention and definitions of prevention. Research and conceptual papers that have been published in the Asian Pacific Education Review serve as examples of important topics to address from a prevention perspective. The topics are school bullying, school achievement, career development, and educator professional development and educational reform. The paper also discusses prevention best practices by summarizing the recently adopted American Psychological Association Guidelines for Prevention in Psychology, emphasizing that the Guidelines are applicable for professions beyond psychology and they also apply in different parts of the world. Finally, the paper discusses prevention in the future, especially noting that advances in science, technology, and population demographics will increase the importance of prevention in the twenty-first century.  相似文献   

20.
《欧洲教育》2013,45(2-3):3-6
The responses which we received on the appearance of the first issue of Western European Education have been gratifying: they confirmed the need for a journal to help overcome the linguistic and geographic obstacles that tend to keep American educators unaware of the many interesting developments in modern West European education. The responses also welcomed the access — offered by this journal — to relevant sources and documents that are otherwise not available through bibliographic channels; and the readers seem to favor the policy that each issue be devoted to a selected theme and each article be introduced by editorial explanations. The layout of these introductions has aroused justified criticism, and we hope the present issue will show improvement in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号