首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在中学数学中所涉及的三角形面积公式很多,灵活地运用它,均会收到满意的效果,其中公式S_△=1/2bcsinA为证明平面几何中两个三角形面积相等开辟了一条蹊径,下面举几例供读者参考: 例1 如图1,在△ABC中,AB=AC,D为底边上任一点,作∠BDE=∠CDF,交两腰于E、F。求证:S_(△BDF)=S_(△CDE)。  相似文献   

2.
AD、BE、CF 是锐角△ABC 的三条高,则△DEF 为△ABC 的垂足三角形(如图1),用S_(△ABC)、R 分别表示△ABC 的面积和外接圆半径.用 S_(△ABC)、L_(△DEF)分别表示△DEF 的面积和周长,则垂足三角形有如下性质:  相似文献   

3.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

4.
关于三角形的内接三角形面积估值问题,我们已有以下结论: 将△ABC分为四个较小的小三角形,中间的那一个△DEF内接于△ABC,其余三个在△DEF的三边上,则△DEF的面积≥main≥{△AEF的面积,△BDF的面积,△CED的面积}。(参见O.Bottema等著,单墫译《几何不等式》)。  相似文献   

5.
命题设E,F分别为正方形ABCD的边AB,BC上的点,则EF=AE FC的充要条件为∠EDF=45°.证明如图1,延长FC到点G,使得CG=AE,易证△DAE≌△DCG,从而DE=DG,∠ADE=∠CDG,且∠EDG=∠EDC ∠CDG=∠ADC=90°.在△DEF与△DGF中,DE=DG,DF为公共边:若EF=AE FC=FC CG=CG,则△DEF≌△DGF,∠EDF=∠GD  相似文献   

6.
我们在《几何不等式》([荷兰]O.Bottema等著,单尊译)一书中.见有下述一道命题:将△ABC分为四个较小的小三角形,中间的那一个△DEF内接于△ABC,其余三个在△DEF的三边上,则△DEF的面积≥min(△AEF的面积,△BDF的面积,△CED的面积) ①当且仅当D、E、F为△ABC三边中点时,等号成立.  相似文献   

7.
文[1]中,胡如松先生提出了若干猜想,由于多数猜想不难证明或否定,现仅对其中两个猜想予以证明. 设△DEF 为△ ABC 内接三角形(如图).并设△ ABC的三内角为 A、B、C;三边 BC = a、CA = b、AB = c ;EF = a0、FD =b0、DE = c0 .分别设△ ABC 、△ DEF 、△ AEF 、△ BDF 、△  相似文献   

8.
几何证明不象代数计算那样有程式可循,五花八门、精彩纷呈的证法使得有人爱不释手.而另一部分人则退避三舍,其实只要掌握正确的证明思路的探求方法,则不难拨开证明中的“迷雾”,使几何证明从此不再神秘.下面以相似三角形为例加以说明.例1如图1,△ABC∽△ADE,求证:DE∥BC图1证明∵△ABC∽△DEF(已知)———“∵”后面通常只能是已知、从图“看”出来的显然结论、已证.∴∠ADE=∠B(相似三角形的对应角相等)———这里的“∵、∴”组成了一个逻辑链.∴DE∥BC(同位角相等,两直线平行)———其条件是省略了的已证的“∠ADE=∠B”,它…  相似文献   

9.
题目(人教版《几何》第二册复习题三Pll3第13题)如图】,A是CD上的一点,△ABC、△ADE都是等边三角形,BD. 分析:易证 证明:因为 所以AB=求证:CE=△ABD兰△ACE(SAS).△ABC为等边三角形,AC,乙召沌C二60“. 因为△ADE为等边三角形, 所以AD二AE,乙E.4D二600, 所以乙BAD二乙CAE=1200, 所以△ABD鉴△ACE, 所以CE二BD. 一、条件不变,引伸结论 变式I:在原题目不变的前提下,可以探求以下结论: (l)求证△ABF哭△ACC; (2)求证AG二AF: (3)连结‘F,求证△A‘F是等边三角形; (4)求证CF// CD. 证明:(l)因为△ABD丝△AcE, 所…  相似文献   

10.
题目:如图1在△ABC中,DE∥BC分别交AB、AC于D、E两点,过点E作EF∥AB交BC于点F,请按图示的数据计算.(1)求平行四边形DBEF的面积S,(2)求△EFC的面积S1,(3)求△ADE的面积S2,(4)发现的规律是什么?解:(1)S=BF×3=2×3=6.(2)S1=12CF×3=12×6×3=9.(3)因为:DE∥BC,EF∥AB.所以四边形DBFE是平行四边形所以DE=BF=2,所以∠ADE=∠ABC.因为∠A=∠A,所以△ADE~△ABC.  相似文献   

11.
命题 设△DEF是△ABC的内接三角形,D、E、F关于所在边中点的对称点为D′、E′、F′,则 (1)S_(△DEF)=S_(△D′E′F′) (2)S_(△DEF′)=S_(△D′EF),S_(EF′D′)=S_(△E′FD),S_(△FD′E′)=S_(F′DE)  相似文献   

12.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

13.
面积比的类型很多,本文着重谈“有一个角对应相等(或互补)的两个三角形面积之比等于夹这个角的两边乘积之比”在几何证题中的广泛应用。这个性质可表示为: 定理:在△ABC与△A_1B_1C_1中,∠B=∠B_1(或互补),则 S_(△ABC)/S(△A_1B_1C_1)=(AB·BC)/(A_1B_1·B_1C_1)。我们用三角形的面积公式S=1/2acsinB容易证明上述定理(略)。不少比例线段的证明,可归结为这个性质的应用。下面举例说明之。 1.证明三角形内角平分线的性质例1 已知△ABC的内角A的平分线交BC于D 求证:  相似文献   

14.
贵刊1987年第二期刊《有关三角形面积的一个不等式》,读后深受启发,但感到文中对定理——若P为△ABC内的一个任意点,分别连结AP、BP、CP并延长交对边BC、CA、AB于D、E、F,则S_△DEF≤1/4S_△ABC——的证明过于繁复。这里提供一个简单的证法。证明如图设BD:DC=;λ_1,CE:EA=λ_2AF:FB=λ_3,则  相似文献   

15.
在证明和求值的诸多几何问题中,往往不能直接找到解题的突破口,那么我们就要另辟蹊径,就是要借助图形转换的方法来解题了.以下介绍三种方法:一、平移:将图形沿着一个方向移动一段距离例1如图1,在六边形ABCDEF中,AB∥ED,AF∥CD,BC∥FE,AB=ED,AF=CD,BC=EF,又知对角线FD⊥BD,FD=24cm,BD=18cm,则六边形ABCDEF的面积为多少?此题显然不能直接运算,但只要将图形适当地分割并平移一下就可以了.解:本题初看无法下手,但仔细观察,题中彼此平行且相等的线段有三组,于是产生将△DEF平移到△BAG,将△BCD平移到△GAF的位置.则长方形…  相似文献   

16.
王静 《考试周刊》2013,(51):7-8
<正>一、原题呈现(2012凉山洲)如图1,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.解:(1)证明:∵四边形ABCD是矩形∴∠D=∠A=90°∴∠EBA+∠AEB=90°∵EF⊥BE,即∠BEF=90°∴∠DEF+∠AEB=90°∴∠DEF=∠EBA(同为∠AEB的余角)  相似文献   

17.
设△ DEF 为锐角△ ABC 的垂足三角形,并设 BC = a,CA = b,AB = c; A EF = a0,FD = b0, DE = c0 . F分别设△ ABC 、△ DEF 、 E△ AEF 、△ BDF、△CDE B的外接圆半径、内切圆半径、  相似文献   

18.
文[1]给出了一个涉及垂足三角形内切圆半径的恒等式:设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,p=(a b c)/2,△ABC的面积、外接圆、内切圆半径分别为?、R、r,若△AEF、△BDF、△CDE的内切圆半径依次为rA、rB、rC,则cot cot cotA2B2C2r A r B rC=?r??R.(1)本文给出(1)式  相似文献   

19.
定理若四边形一条对角线平行另一条对角线,则此对角线必平分该四边形的面积,其逆命题亦成立。如图1,(1)若AE=EC,则S_(△ABD)=S_(△BCD);(2)若S_(△ABD)=S_(△BCD),则AE=EC。这两个命题是显然成立的,读者可根据图1自己证明。下面举例说明它的应用。例1 如图2,在(?)ABCD中,E是对角  相似文献   

20.
如图1,△ABC的角A,B,C所对之边分别为a,b,c.AD,BE,CF为三条高,H为垂心,则△DEF是垂足三角形.又命R和Δ分别为△ABC的外接圆半径和面积,文[1]给出了垂足三角形的周长l0和面积Δ0的公式:l0=4Rsin Asin Bsin C,(1)Δ0=2Δcos Acos Bcos C.(2)可惜其证明太长,现简证如下:先证(1)式.注意到B,C,E,F四点共圆,故有∠AFE=∠C.在△AEF中运用正弦定理,有EFsin A=sin∠AEAFE=cscions C A,所以EF=sinc C·sin Acos A.至此,EF与l0有两种表达式:其一,由于sinc C=sina A,所以EF=acos A.同理,FD=bcos B,DE=ccos C,因而l0=acos A b…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号