首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the first time, we report on the preliminary evaluation of gold coated optical fibers (GCOFs) as three-dimensional (3D) electrodes for a membraneless glucose/O2 enzymatic biofuel cell. Two off-the-shelf 125 μm diameter GCOFs were integrated into a 3D microfluidic chip fabricated via rapid prototyping. Using soluble enzymes and a 10 mM glucose solution flowing at an average velocity of 16 mm s−1 along 3 mm long GCOFs, the maximum power density reached 30.0 ± 0.1 μW cm−2 at a current density of 160.6 ± 0.3 μA cm−2. Bundles composed of multiple GCOFs could further enhance these first results while serving as substrates for enzyme immobilization.  相似文献   

2.
Malondialdehyde (MDA) is widely used as oxidative stress biomarker in biomedical research. Plasma is stored in deep freezers generally till analysis. Effect of such storage on MDA values, which may be variable and prolong, was incidentally observed in the ongoing study which is to estimate oxidative stress with oral iron. Plasma from blood samples of pregnant women (20–30 years age) in third trimester of singleton pregnancy (n = 139), consuming oral iron tablets was stored at −20 °C with intention of MDA estimation, as soon as possible. However logistic problems led this storage for prolonged and variable period (1–708 days). When values of MDA estimated using “Ohkawa” 79 method and readings were plotted against time to check the temporal effect, it showed a hyperbolic curve. Standard deviation (SD) was lowest when samples were tested within 3 weeks time. The samples analyzed within 3 weeks had mean ± SD value of 31.59 ± 26.11 μmol/L, while 123.7 ± 93.97 and 366.5 ± 189.8 μmol/L for samples stored for 1–3 and 4 months to 1 year respectively. Mean ± SD were 539.9 ± 196.8 in the samples store for more than a year. Rate of change in values was also lowest (0.0433 μmol/L/day) in the samples tested within first 3 weeks, which rose to 1.2 μmol/L/day during 3 month’s storage. This rate peaked at storage of 120 days (1.87 μmol/L/day) and fell to 0.502 μmol/L/day in the second year of storage. It is concluded that at −20 °C, only 3 weeks of storage time should be considered valid for fairly acceptable stability in MDA values.  相似文献   

3.
Shah D  Steffen M  Lilge L 《Biomicrofluidics》2012,6(1):14111-1411110
Chemical cytometry on a single cell level is of interest to various biological fields ranging from cancer to stem cell research. The impact chemical cytometry can exert in these fields depends on the dimensionality of the retrievable analytes content. To this point, the number of different analytes identifiable and additionally their subcellular localization is of interest. To address this, we present an electroporation based approach for selective lysis of only the plasma membrane, which permits analysis of the dissolved cytoplasm, while reducing contributions from the nucleus and membrane bound fractions of the cell analytes. The use of 100 μs long pulse and a well defined DC electric field gradient of ∼4.5 kV·cm−1 generated by 3D electrodes initiates release of a cytoplasm marker in ≪1 s, while retaining nuclear fluorescence markers.  相似文献   

4.
We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of −0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.  相似文献   

5.
The goal of this work is to determine the role of the autoimmune cells in multiple sclerosis (MS) induction and the immunomodulatory mechanism of therapy with tyrosine kinase inhibitors (TKIs) in MS attenuation. Samples (5 × 105 cells per well) of C6 and primary rat astrocytes were stimulated with 10 ng/mL of platelet-derived growth factor (PDGFbb) as a positive control forming a mouse model of MS. PDGFbb was added to the astrocytes in the absence or presence of 0.1 and 1 μM of imatinib. Proliferation of C6 and primary rat astrocytes samples were assessed for samples staging by the addition of 1 μCi of 3H-thymidine per well. Samples of RAW 264.7 cells were stimulated for 48 h with 10 ng/mL of PDGFbb in the absence or presence of 0.1 and 1 μM of sorafenib. Tumour necrotic factor (TNF) levels in culture supernatants from RAW 264.7 cells were measured by ELISA. The histologic grade (HG) and the level of TNF of the mouse model of MS was 1/5 and 5 times respectively of those in the control one to clarify that MS induction is due to a major decrease in HG inversely proportional to the accompanied increase in TNF level perpetuating local inflammation and demyelination in MS lesion. The addition of 0.1 and 1 μM doses of imatinib increased HG of the mouse model of MS by 6 and 11 times respectively while 0.1 and 1 μM doses of sorafenib decreased TNF level to be 1/2 and 1/5 of that in the mouse model of MS respectively restoring normal rate of TNF level of normal lesion to show that HGand TNF level would be strongly inversely correlated (r = −0.99) in attenuating MS effectively by TKIs therapy but not in an inverse proportion as in MS induction.  相似文献   

6.
A study of the effect of aggregate size on the resuscitation of dormant M. smegmatis was conducted by constructing cell aggregates with defined sizes and shapes using dielectrophoresis and monitoring the resuscitation process under controlled laboratorial conditions in a long-term cell feeding system. Differently sized cell aggregates were created on the surface of indium tin oxide coated microelectrodes, their heights and shapes controlled by the strength of the induced electric field and the shape of the microelectrodes. Both two-dimensional (ring-patterned) and three-dimensional cell aggregates were produced. The cell aggregates were maintained under sterile conditions at 37 °C for up to 14 days by continuously flushing Sauton’s medium through the chamber. Resuscitation of dormant M. smegmatis was evaluated by the production of the fluorescent dye 5-cyano-2,3-ditolyltetrazolium chloride. The results confirm that the resuscitation of dormant M. smegmatis is triggered by the accumulation of a resuscitation promoting factor inside the aggregates by diffusion limitation.  相似文献   

7.
A study of iron, zinc, copper and selenium concentration levels was carried out in three compartments namely, maternal serum (MS), colostrums and cord blood serum (CS) of healthy Indian mothers (n = 42) who delivered healthy normal neonates without any congenital anomalies at Bhabha Atomic Research Centre hospital, Mumbai. Fe, Zn, Cu in maternal serum, cord blood and colostrums were estimated by flame atomic absorption spectrometry while Se was determined by graphite furnace absorption spectrometry. It was seen that there was a significant difference in the level of trace elements in the three compartments. The average levels of Fe in the three compartments were 1,132 ± 519, 2,312 ± 789 and 1,183 ± 602 μg/L while Zn was 514 ± 149, 819 ± 224 and 7,148 ± 2,316 μg/L respectively. Mean Cu values were 1,614 ± 295, 301 ± 77 and 392 ± 174 μg/L respectively while Se values were 70 ± 15, 36 ± 10 and 23 ± 8 μg/L respectively. The results indicated a positive correlation of Fe and Zn concentrations in MS versus CS which were (r = 0.386), (r = 0.572) respectively and Fe levels in MS and colostrums (r = 0.235). A few inter element correlations were found within compartments. Zn and Se showed a negative correlation in both MS (r = −0.489) and colostrums (r = −0.258) while a positive inter correlation of Fe and Zn was seen in MS (r = 0.44) and in CS (r = 0.54). This study gave us an overview of the serum and colostrum values of mother and neonates in Indian population, data of which are scarce.  相似文献   

8.
Understanding the correlation between exposed surfaces and performances of controlled nanocatalysts can aid effective strategies to enhance electrocatalysis, but this is as yet unexplored for the nitrogen reduction reaction (NRR). Here, we first report controlled synthesis of well-defined Pt3Fe nanocrystals with tunable morphologies (nanocube, nanorod and nanowire) as ideal model electrocatalysts for investigating the NRR on different exposed facets. The detailed electrocatalytic studies reveal that the Pt3Fe nanocrystals exhibit shape-dependent NRR electrocatalysis. The optimized Pt3Fe nanowires bounded with high-index facets exhibit excellent selectivity (no N2H4 is detected), high activity with NH3 yield of 18.3 μg h−1 mg−1cat (0.52 μg h−1 cm−2ECSA; ECSA: electrochemical active surface area) and Faraday efficiency of 7.3% at −0.05 V versus reversible hydrogen electrode, outperforming the {200} facet-enclosed Pt3Fe nanocubes and {111} facet-enclosed Pt3Fe nanorods. They also show good stability with negligible activity change after five cycles. Density functional theory calculations reveal that, with high-indexed facet engineering, the Fe-3d band is an efficient d-d coupling correlation center for boosting the Pt 5d-electronic exchange and transfer activities towards the NRR.  相似文献   

9.
Deterministic lateral displacement (DLD) is a microfluidic size-based particle separation or filter technology with applications in cell separation and enrichment. Currently, there are no cost-effective manufacturing methods for this promising microfluidic technology. In this fabrication paper, however, we develop a simple, yet robust protocol for thermoplastic DLD devices using regulatory-approved materials and biocompatible methods. The final standalone device allowed for volumetric flow rates of 660 μl min−1 while reducing the manufacturing time to <1 h. Optical profilometry and image analysis were employed to assess manufacturing accuracy and precision; the average replicated post height was 0.48% less than the average post height on the master mold and the average replicated array pitch was 1.1% less than the original design with replicated posts heights of 62.1 ± 5.1 μm (mean ± 6 standard deviations) and replicated array pitches of 35.6 ± 0.31 μm.  相似文献   

10.
Most cytokine receptors including interleukin (IL)-9 have soluble counterparts in body fluids. We planned to investigate the pathophysiological significance of the serum soluble IL-9 receptor (sIL-9R) level. We determined the serum sIL-9Rα chain (sIL-9Rα) levels in 96 healthy Japanese individuals to establish a control value by means of specific human sIL-9Rα ELISA, followed by a preliminary application in a patient with diarrhea positive hemolytic uremic syndrome. Age was negatively correlated with the sIL-9Rα level (Spearman r = −0.241, n = 96, p = 0.0180). The serum sIL-9Rα level showed a progressive decline to the normal adult level by the age of 30. The serum sIL-9Rα level of the patient with HUS was markedly higher than those of the age-matched control from the onset of the disease. Because of the remarkable age-dependent variability of sIL-9Rα in healthy subjects, disease-related changes, as well as therapy-dependent alterations, should be considered with caution. Thus, it is recommended that when the serum sIL-9Rα levels of patients are evaluated, the values should be compared with those of age-matched controls. The established control value will be used to discriminate between normal and the pathological conditions in our future studies.  相似文献   

11.
Jen CP  Chen WF 《Biomicrofluidics》2011,5(4):44105-4410511
Manipulating and discriminating biological cells of interest using microfluidic and micro total analysis system (μTAS) devices have potential applications in clinical diagnosis and medicine. Cellular focusing in microfluidic devices is a prerequisite for medical applications, such as cell sorting, cell counting, or flow cytometry. In the present study, an insulator-based dielectrophoretic microdevice is designed for the simultaneous filtration and focusing of biological cells. The cells are introduced into the microchannel and hydrodynamically pre-confined by funnel-shaped insulating structures close to the inlet. There are ten sets of X-patterned insulating structures in the microfluidic channel. The main function of the first five sets of insulating structures is to guide the cells by negative dielectrophoretic responses (viable HeLa cells) into the center region of the microchannel. The positive dielectrophoretic cells (dead HeLa cells) are attracted to regions with a high electric-field gradient generated at the edges of the insulating structures. The remaining five sets of insulating structures are mainly used to focus negative dielectrophoretic cells that have escaped from the upstream region. Experiments employing a mixture of dead and viable HeLa cells are conducted to demonstrate the effectiveness of the proposed design. The results indicate that the performance of both filtration and focusing improves with the increasing strength of the applied electric field and a decreasing inlet sample flow rate, which agrees with the trend predicted by the numerical simulations. The filtration efficiency, which is quantitatively investigated, is up to 88% at an applied voltage of 50 V peak-to-peak (1 kHz) and a sample flow rate of 0.5 μl/min. The proposed device can focus viable cells into a single file using a voltage of 35 V peak-to-peak (1 kHz) at a sample flow rate of 1.0 μl/min.  相似文献   

12.
Nitric oxide (NO) derivative of l-arginine is an important signaling molecule that mediates a variety of essential physiological processes including vasodilation neurotransmission, and host cell defense. Many types of cells produce NO e.g., smooth muscle cell, endothelial cell, and leukocytes. Host defense functions are known for many bacterial and parasitic infections. In the present study we estimated the levels of serum NO in cases of salmonellosis and in controls. The nitric oxide was estimated by cadmium reduction method, Griess reaction. We observed that in controls the level of NO was (22 ± 2.06) μmol/l and in cases the level was (137.49 ± 29.84) μmol/l. The level of NO was significantly higher than controls (p < 0.001). The raised level of NO could be accounted for by host response to the infection. The host rapidly expresses iNOS, which in turn produces an excess amount of NO. Its cytotoxic effect is by its reactive nitrogen oxide derivative e.g., peroxynitrite. Apart from this it also has anti apoptotic functions. In future one can do follow up study of typhoid cases by bacterial culture.  相似文献   

13.
We have studied the contraction and extension of Vorticella convallaria and its mechanical properties with a microfluidic loading system. Cells of V. convallaria were injected to a microfluidic channel (500 μm in width and 100 μm in height) and loaded by flow up to ∼350 mm s−1. The flow produced a drag force on the order of nanonewton on a typical vorticellid cell body. We gradually increased the loading force on the same V. convallaria specimen and examined its mechanical property and stalk motion of V. convallaria. With greater drag forces, the contraction distance linearly decreased; the contracted length was close to around 90% of the stretched length. We estimated the drag force on Vorticella in the channel by calculating the force on a sphere in a linear shear flow.  相似文献   

14.
Cinnamon has been used as an anti-diabetic agent for centuries but only in recent few years its mechanism of action has been under investigation. Previous studies showed that cinnamon might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in fat cells. To study if hydro-alcoholic cinnamon extract (HACE) enhances GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 100 or 1,000 μg/ml HACE, as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two-independent samples t test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM of groups 100 and 1,000 μg/ml HACE and lower in 1 % DMSO treated myotubes (CI = 0.95, P < 0.05). For N/ER reverse results were obtained (CI = 0.95, P < 0.05). As our results have shown HACE induces GLUT4 translocation from intra-cell into cell surface. We conclude that cinnamon maybe a choice of type-2 diabetes mellitus treatment because its extract enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However it is necessary to trace the signaling pathways which are activated by HACE in muscular tissue.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) shows promise for identifying single bacteria, but the short range nature of the effect makes it most sensitive to the cell membrane, which provides limited information for species-level identification. Here, we show that a substrate based on black silicon can be used to impale bacteria on nanoscale SERS-active spikes, thereby producing spectra that convey information about the internal composition of the bacterial capsule. This approach holds great potential for the development of microfluidic devices for the removal and identification of single bacteria in important clinical diagnostics and environmental monitoring applications.Plasma etching of silicon can be used to produce inexpensive, large surface area, nano-textured surfaces known as black silicon. Recently, it has been shown that black silicon nano-needles can impale bacteria1 and that it can be used as a sensor in microfluidic devices.2 When coated by a plasmonic metal, such as gold, the nano-textured surface of black silicon is ideal for use as a surface-enhanced Raman scattering (SERS) sensing platform.3 This work aims to investigate whether gold-coated black silicon nano-needles can be used to both impale bacteria and identify them by SERS. This combination of properties would promote the development of microfluidic devices for the removal and monitoring of bacteria in a wide range of medical, environmental, and industrial applications.4Black silicon was fabricated by a reactive ion etching technique,5 resulting in pyramidal-shaped spikes of height 185 ± 30 nm, full width at half height of 54 ± 10 nm, and 10 ± 2.4 nm radius of curvature at the tip. Samples were then magnetron sputter coated with 200 nm of gold, as this coating thickness was found to provide a suitable compromise between SERS enhancement and impalement efficiency. E. coli (ATCC 25922) from −80 °C stock was isolated on a nutrient agar plate (Difco nutrient broth, Becton Dickinson) for approximately 12 h. A single E. coli colony was then inoculated from the plate into 20 ml of nutrient broth media and incubated overnight at 37 °C with orbital shaking at 200 rpm. The total biomass of overnight culture was adjusted to an optical density of 0.3 at λ = 600 nm by adding fresh sterile nutrient broth (Cary 50 spectrophotometer, Agilent). The E. coli planktonic cells were washed three times by centrifugation at 12 000 rpm (Centrifuge 5804 R, Eppendorf) for 2 min. The washed cells were then re-suspended in a low strength minimum medium (Dulbecco A, phosphate buffered saline). A volume of 100 μl of solution was pipetted onto substrates and left to incubate for 1 h on the bench. Separate sets of samples were created for scanning electron microscope (SEM) imaging, live/dead staining, and SERS. Three sets were needed as each of these measurements altered the samples and left them unsuitable for further analysis.The first set of samples was washed three times with milliQ water after incubation, allowed to dry and then immediately sputter coated with gold using the Emitech K975x (operating current 35 mA, sputter time 32 s, stage rotation 138 rpm, and vacuum of 1 × 10−2 mbar). SEM imaging was performed with a Zeiss Supra 40VP in high vacuum mode with a working distance of 5 mm and an accelerating voltage of 3 kV. Figure Figure11 shows an example of the different levels of impalement that occurred on the black silicon surface. All cells showed signs of damage, but in some cases, the damage was limited to the perimeter of the cell and the main body appeared whole. In other cases, the entire cell had collapsed onto the spikes.Open in a separate windowFIG. 1.A typical SEM image showing E. coli cells with different levels of impalement on gold-coated black silicon.The second set of samples was used for live/dead staining (Invitrogen BacLight Bacterial Viability Kit L7012) with 3.34 mM SYTO 9 (green fluorescence) and 20 mM propidium iodide (red fluorescence). Equal volumes of both dyes were mixed thoroughly in a tube and added to the sample in a ratio of 3 μl of mixed dye to 1 ml of bacterial suspension. After mixing, a volume of 100 μl of the solution was pipetted onto the substrates, which were then incubated at room temperature in the dark for 15 min, before the staining solution was removed by pipetting. The substrates were then washed three times with milliQ water and mounted on a microscope slide for fluorescence imaging. The substrates were not allowed to dry and were stored in phosphate buffered saline at 4 °C when not in use. An epifluorescence microscope (Olympus IX71) with a mercury lamp source and a 60× water immersion objective was used to collect live/dead images from the substrates. Two filter blocks were used to collect the images: U-MNIBA2 blue excitation narrow band delivered green emission (live) and U-MWIG2 green excitation wide band provided red emission (dead).The live/dead image in Figure Figure22 shows a mix of both live and dead cells on the black silicon sample. The prevalence of live cells could be due to the incomplete impalement seen under SEM for some cells. It can also be explained by the sample still being wet during live/dead staining. The cells are dried prior to imaging in the SEM and this could weaken the cell wall and allow capillary forces to draw the cells onto the spikes for impalement. This hypothesis is supported by the large number of cells on the stained sample and the presence of cell groupings and cells imaged during mid-division. If the cells were immediately impaled, then such activity would not have been visible and a greater proportion of red cells would be expected.Open in a separate windowFIG. 2.Epifluorescence image showing live (green) and dead (red) E. coli cells after incubation on gold-coated black silicon.The third set of samples was washed three times with milliQ water after incubation and allowed to dry prior to spectral analysis. SERS spectra were collected with a Renishaw inVia Raman spectrometer operating at 785 nm with a 1200 l/mm grating. Power at the sample was 150 mW focused with a 100 × /0.85 NA objective to obtain a diffraction limited laser spot. The resulting spot size (≤2 μm in diameter) is well matched to the size of the bacterial cells. Spectra were collected with three accumulations of 10 s. Data were background subtracted6 and normalised to unity for ease of plotting. A great deal of variability was observed in the resulting spectra, as shown in Figure Figure33.Open in a separate windowFIG. 3.SERS spectra of E. coli after incubation on a gold-coated black silicon substrate. The spectrum numbers represent single cells at different locations and different levels of impalement.It should be noted that E. coli SERS is known to produce a high level of variability,7–12 depending on the experimental setup.13 However, the variability seen in the SERS spectra of Fig. Fig.33 is unusual for measurements performed under consistent experimental conditions. This increased level of variability may be related to the different levels of impalement seen in Fig. Fig.1,1, which results in the probing of different internal components. SERS is a surface sensitive technique, with the signal primarily arising within 2 nm of the metal surface.14 Note that unlike apertureless nanoprobes15 or conical plasmonic nanotips,16 the SERS signal in black silicon arises primarily from “hot spots” between the spikes, where the plasmon resonance field is particularly strong.17 Therefore, depending on the depth and location of impalement, different biomolecules are expected to be excited by this novel substrate.Some peaks occur in the same position for multiple spectra (e.g., peak positions 420, 893, 1001, 1285, and 1307 cm−1), but there are also a lot of unique peaks. The vertical lines in Fig. Fig.33 indicate peaks which have appeared in the literature for SERS of E. coli.7–12 Spectrum 3 has a high proportion of peaks matching published values. This is also the case for spectrum 5, which shares a few peak positions with spectrum 3. Preliminary peak allocations have identified carbohydrates11 (420 cm−1), tyrosine11 (650 cm−1), adenine10,11 (706 and 735 cm−1), hypoxanthine7 (722 and1373 cm−1), phenylalanine9 (1001 cm−1), amide III (Ref. 10) (1285 cm−1), CH2 deformation12 (1556 cm−1), and C=C10 (1587 cm−1).Given the varying levels of impalement observed in the SEM, it appears that the spike shape and Au coating should be further optimized to ensure that the entire cell is consistently pierced and the internal biomolecules are more comprehensively probed. In this way, it may be possible to obtain a more reproducible SERS spectrum of the internal biomolecular constituents of single bacterial cells, thereby providing rapid identification for medical and environmental diagnostic applications. Given that SERS is insensitive to water,4 future work should aim to achieve impalement in an aqueous environment, so that the full capability of microfluidics can be used to separate and concentrate suspended bacteria before presenting them to the substrate for rapid analysis.4 This suggests a broad range of potential applications in the detection, monitoring, and control of bacterial contamination.  相似文献   

16.
In conjunction with thyroxine, bilirubin may play an important role for regulation of hsCRP level and a consequent pro-inflammatory condition in hypothyroidism. In present study we evaluated the dependence of hsCRP changes on total bilirubin (BT) and fT4 level in thirty overt (OH) and thirty subclinical hypothyroidism (SH). Serum BT, hsCRP, thyroxine and TSH were measured in both groups and compared with forty control subjects. Serum values of TSH, hsCRP showed raised (P < 0.001 for both) values with lower levels for fT4 and BT (P < 0.001 and 0.03 respectively) in hypothyroid patients compared to the controls. ANOVA showed significant increments in TSH and hsCRP values with decreases in fT4 among the control, SH and OH groups respectively (P < 0.001). BT values showed decrease in OH group only in comparison to controls (P = 0.04). Regression analysis revealed that hsCRP was negatively dependent on fT4 (β = −0.35, P = 0.002) and serum bilirubin (β = −0.40 and P < 0.001 respectively). Univariate general linear model analysis showed this dependence persisted even when carried out distinctly in SH and OH groups separately (P < 0.001). TSH did not show any significant predictive value on the hsCRP level in either of these two tests. From these analyses we suggest that serum hsCRP is closely integrated to a lowered synthesis of bilirubin and fT4 in hypothyroid patients. Furthermore, this causal relationship is not only limited to overt but also extends to the SH.  相似文献   

17.
Monolayer transition metal dichalcogenides (TMDs) have attracted considerable attention as atomically thin semiconductors for the ultimate transistor scaling. For practical applications in integrated electronics, large monolayer single crystals are essential for ensuring consistent electronic properties and high device yield. The TMDs available today are generally obtained by mechanical exfoliation or chemical vapor deposition (CVD) growth, but are often of mixed layer thickness, limited single crystal domain size or have very slow growth rate. Scalable and rapid growth of large single crystals of monolayer TMDs requires maximization of lateral growth rate while completely suppressing the vertical growth, which represents a fundamental synthetic challenge and has motivated considerable efforts. Herein we report a modified CVD approach with controllable reverse flow for rapid growth of large domain single crystals of monolayer TMDs. With the use of reverse flow to precisely control the chemical vapor supply in the thermal CVD process, we can effectively prevent undesired nucleation before reaching optimum growth temperature and enable rapid nucleation and growth of monolayer TMD single crystals at a high temperature that is difficult to attain with use of a typical thermal CVD process. We show that monolayer single crystals of 450 μm lateral size can be prepared in 10 s, with the highest lateral growth rate up to 45 μm/s. Electronic characterization shows that the resulting monolayer WSe2 material exhibits excellent electronic properties with carrier mobility up to 90 cm2 V−1 s−1, comparable to that of the best exfoliated monolayers. Our study provides a robust pathway for rapid growth of high-quality TMD single crystals.  相似文献   

18.
Chronic pancreatitis (CP) presenting clinically with upper abdominal pain, as well as exocrine and endocrine insufficiencies, is characterized by irreversible morphological and functional alterations in the pancreas. The objective of the present study is to investigate the plasma levels of transforming growth factor-β 1 (TGF-β1), matrix metalloproteinases MMP-1 (collagenase) and MMP-3 (stromelysin) in CP. A total of 71 CP patients and 100 control subjects were considered for the study. Plasma levels of TGF-β1, MMP-1 and MMP-3 were determined by enzyme-linked immunosorbent assay in patients and control subjects. The plasma levels of TGF-β1 and MMP-1 were significantly elevated in patients compared to control group (*P = 0.0301, **P < 0.0001). However, there was no significant difference in the plasma levels of MMP-3 between patients and controls (P = 0.3756). The elevated levels of TGF-β1 and MMP-1 may influence the inflammatory reactions by enhancing the pancreatic stellate cell activation and deposition of extracellular matrix resulting in pancreatic fibrosis. Thus, the present study highlights the role of fibrogenic cytokine marker TGF-β1 and matrix metalloproteinases in the pathogenesis of CP.  相似文献   

19.
In this contribution, we present a system for efficient preconcentration of pathogens without affecting their viability. Development of miniaturized molecular diagnostic kits requires concentration of the sample, molecule extraction, amplification, and detection. In consequence of low analyte concentrations in real-world samples, preconcentration is a critical step within this workflow. Bacteria and viruses exhibit a negative surface charge and thus can be electrophoretically captured from a continuous flow. The concept of phaseguides was applied to define gel membranes, which enable effective and reversible collection of the target species. E. coli of the strains XL1-blue and K12 were used to evaluate the performance of the device. By suppression of the electroosmotic flow both strains were captured with efficiencies of up to 99%. At a continuous flow of 15 μl/min concentration factors of 50.17 ± 2.23 and 47.36 ± 1.72 were achieved in less than 27 min for XL1-blue and K12, respectively. These results indicate that free flow electrophoresis enables efficient concentration of bacteria and the presented device can contribute to rapid analyses of swab-derived samples.  相似文献   

20.
Cui S  Liu Y  Wang W  Sun Y  Fan Y 《Biomicrofluidics》2011,5(3):32003-320038
This paper examined the feasibility of a microfluidics chip for cell capturing and pairing with a high efficiency. The chip was fabricated by the polydimethylsiloxane-based soft-lithography technique and contained two suction duct arrays set in parallel on both sides of a main microchannel. Cells were captured and paired by activating two sets of suction ducts one by one with the help of syringe pumps along with switching the cell suspensions inside the main microchannel correspondingly. The effects of suction flow rate and the dimensions of suction channels on the cell capturing and pairing efficiency were characterized. The present chip was capable of creating 1024 pairs of two different cell populations in parallel. The preliminary experimental results showed that the cell capturing efficiency was 100% and the pairing one was 88% with an optimal suction rate of 5 μl/min in the chip in the 2 μm-sized suction duct chip. The cell viability after capture inside the microfluidic device was 90.0 ± 5.3%. With this cell capturing and pairing chip, interaction between cells in a single pair mode can be studied. The ability to create cell pairs has a number of biological applications for cell fusion, cell-cell interaction studies, and cell toxicity screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号