首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金良 《中学教研》2002,(8):21-22
高中数学新教材(试验本)第二册(上)的第108页有一道习题: 两条曲线的方程是f(x,y)=0和f_2(x,y)=0,它们的交点是P(x_0,y_0),求证方程,f_1(x,y) λf_2(x,y)=0的曲线也过点P(λ是任意实数)。我们把上题所叙述的事实称为“过两已知曲线  相似文献   

2.
在平面解析几何中,我们经常遇到过两条曲线交点的曲线方程的问题。它有什么特征呢?现叙证如下: 性质1 若曲线l_1:f_1(x,y)=0与l_2:f_2(x,y)=0有交点为P_0(x_0,y_0),则曲线l_3:f_1(x,y)+λf_2(x,y)=0也经过交点P_0(x_0,y_0)其中λ为一切实数。  相似文献   

3.
六年制重点中学高中数学课本《解析几何》中有不少习题,若应用下述结论将使解法大大简化。定理设两条曲线的方程是f_1(x,y)=0与f_2(x,y)=0,P(x_o,y_o)是它们的交点。则方程为f_1(x,y) λf_2(x,y)=0(λ是任意常数)的曲线也经过点P(x_o,y_o). 证明因为P(x_0,y_0)是f_1(x,y)=0  相似文献   

4.
一、二曲线的和系定义1:在实数域内,设有二曲线 f_1(x、y)=0,f_2(x、y)=0,称曲线系mf_1(x、y)+nf_2(x、y)=0为曲线f_1、f_2的和系.m、n是不为0的实参数.令λ=n/m,则曲线f_1、f_2的和系可以写成: f_1(x、y)+λf_2(x、y)=0,当f_1=f_2时,规定λ≠—1。性质1:当二曲线f_1(x、y)=0与f_2(x、y)=0有公共点时,二曲线的和系f_1(x、y)+λf_2(x、y)=0为过f_1、f_2公共点的曲线系。性质2:除曲线f_1(x、y)=0与f_2(x、y)=0的公共点以外,二曲线的和系f_1(x、y)+λf_2(x、y)=0与曲线f_1或f_2没有其他的公共  相似文献   

5.
众所周知,如果两条曲线的方程是:f_1(x,y)=0和f_2(X,y)= 0,它们的交点是P(x_0,y_0),则方程f_1(x,y)+ λf_2(x,y)=0曲线是经过定点P的曲线系方程。利用或构造这个方程进行解题,可使某些问题的求  相似文献   

6.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

7.
数学解题中的数形结合,指的是对题目中的条件、结论及题意背景从代数和几何两方面考虑,在两方面的结合上寻找思路.这样做可使复杂抽象的问题,变得清晰明了.以下分六个方面介绍. 1.解方程方程f(x)=g(x)的实数解是曲线y= f(x)与y=g(x)的交点的横坐标.特殊方程f(x)=0的实数解是曲线y=f(x)与x轴交点的横坐标. 例1 关于x的一元二次方程  相似文献   

8.
本文证明了命题:若圆锥曲线f_1(x,y)=0和f_2(x,y)=0的二次项系数相应相等且相交,则经过交点弦所在直线方程为f_1(x,y)-f_2(x,y)=0。从而推出命题:圆锥曲线f(x,y)=0被点M(m,n)所平分弦所在直线方程为f(x,y)-f(2m-x,2n-y)=0。并举例说明其应用。  相似文献   

9.
高昌 《教育革新》2007,(10):59-59
我们知道,方程f1(x,y) λf2(x,y)=0表示的曲线经过f1(x,y)=0和f2(x,y)=0交点的曲线系方程.利用上述曲线系方程求过已知两曲线交点的新曲线方程,可避免求交点的坐标,其方法如下.  相似文献   

10.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

11.
已知曲线间的位置关系,求曲线方程中参数满足的条件.这类习题在平面解析几何中常常遇到.现在就这类习题的解法,作以探讨. 如果已知曲线C_1:F(x,y,a)=0和曲线C_2:G(x,y)=0(其中a为参数),那么C_1和C_2的交点问题,归结为方程组F(x,y,a)=0 G(x,y)=0 有无实数解问题。利用方程组同解原理,得到与之同解的方程组{φ(x,a)=0 G(x,y)=0 (或者g(y,a)=0 G(x,y)=0). 这样一来,问题就转化为由φ(x,a)=0满足的条件,求参数a的问题.  相似文献   

12.
童其林 《新高考》2011,(11):38-41
零点定理是新教材中增加的一个重要定理,在解题中有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.即方程f(x)=0有实数根图像y=f(x)与x轴有交点函数y=f(x)有零点.什么是零点定理呢?如  相似文献   

13.
1 直线或曲线恒过定点的理论依据 1.1 由"f1(x,y) g(m)·f2(x,y)=0"求定点 在平面上如果已知两条曲线(包括直线)C1:f1(x,y)=0与C2:f2(x,y)=0相交,则f1(x,y) g(m)f2(x,y)=0的图象过C1,C2的交点.  相似文献   

14.
零点定理是必修1(人教版)的内容,是新教材新增的一个重要定理,有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.零点定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,且满足f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c  相似文献   

15.
新题赏析     
题目:已知f(x)=x~2-8x,g(x)=61nx+m.是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由。解法一:函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点,即函数(?)(x)=g(x)-f(x)的图象与x轴的正半轴有且只有三个不同的交点.  相似文献   

16.
<正>一般地,使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.因此,函数y=f(x)的零点就是方程f(x)=0的实数根.从图象上看,函数y=f(x)的零点就是它的图象与x轴交点的横坐标.一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.我们经常会遇到函数与方程的有关问题,下面我们看这样几个题目.  相似文献   

17.
<正>对于函数y=f(x),我们把使f(x)=0的实数x叫做函数的零点.这样,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴(直线y=0)交点的  相似文献   

18.
我们知道,对于二次曲线f(x,y)=0(圆、椭圆)和平面内一点P0(x0,y0),有如下充要条件。(1)若P0(x0,y0)在曲线f(x,y)=0的内部f(x0,y0)<0.(2)若P0(x0,y0)在曲线f(x,y)=0的内部过P0(x0,y0)的直线L恒与曲线f(x,y)=0相交。如果充分利用“点在曲线内部”这一充要条件和性质解题,不仅求解思路清晰、和谐、优美,而且解题过程简捷、明快,可收到事半功倍的效果。下举数例说明。例1.已知圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)y=7m+4(m∈R),证明:不论m取什么实数,直线L与圆恒交于两点。解析:本题的常规解法是:把直线代入圆方程中并整理成有关一元二次方程,…  相似文献   

19.
题目若f_1=3~(|x-p_1|),f_2=2·3~(|x-p_2|),x∈R,p_1,p_2为常数,且f(x)= (?) (Ⅰ)求f(x)=f_1(x)对所有实数x成立的充要条件(用p_1,p_2表示);(Ⅱ)设a,b为两实数,a相似文献   

20.
题目巳知函数f(x)=ax2 bx c,a>b>c,f(1)=0. (1)求证f(x)的图像x轴有二不同交点; (2)是否存在实数m,当f(m)=-a时,f(m 3)为正数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号