首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Liu Y  Hartono D  Lim KM 《Biomicrofluidics》2012,6(1):12802-1280214
This paper presents a two-stream microfluidic system for transporting cells or micro-sized particles from one fluid stream to another by acoustophoresis. The two fluid streams, one being the original suspension and the other being the destination fluid, flow parallel to each other in a microchannel. Using a half-wave acoustic standing wave across the channel width, cells or particles with positive acoustic contrast factors are moved to the destination fluid where the pressure nodal line lies. By controlling the relative flow rate of the two fluid streams, the pressure nodal line can be maintained at a specific offset from the fluid interface within the destination fluid. Using this transportation method, particles or cells of different sizes and mechanical properties can be separated. The cells experiencing a larger acoustic radiation force are separated and transported from the original suspension to the destination fluid stream. The other particles or cells experiencing a smaller acoustic radiation force continue flowing in the original solution. Experiments were conducted to demonstrate the effective separation of polystyrene microbeads of different sizes (3 μm and 10 μm) and waterborne parasites (Giardia lamblia and Cryptosporidium parvum). Diffusion occurs between the two miscible fluids, but it was found to have little effects on the transport and separation process, even when the two fluids have different density and speed of sound.  相似文献   

2.
In this contribution, we present a system for efficient preconcentration of pathogens without affecting their viability. Development of miniaturized molecular diagnostic kits requires concentration of the sample, molecule extraction, amplification, and detection. In consequence of low analyte concentrations in real-world samples, preconcentration is a critical step within this workflow. Bacteria and viruses exhibit a negative surface charge and thus can be electrophoretically captured from a continuous flow. The concept of phaseguides was applied to define gel membranes, which enable effective and reversible collection of the target species. E. coli of the strains XL1-blue and K12 were used to evaluate the performance of the device. By suppression of the electroosmotic flow both strains were captured with efficiencies of up to 99%. At a continuous flow of 15 μl/min concentration factors of 50.17 ± 2.23 and 47.36 ± 1.72 were achieved in less than 27 min for XL1-blue and K12, respectively. These results indicate that free flow electrophoresis enables efficient concentration of bacteria and the presented device can contribute to rapid analyses of swab-derived samples.  相似文献   

3.
Electroosmotic flow was studied in thin film microchannels with silicon dioxide and silicon nitride sidewalls formed using plasma-enhanced chemical vapor deposition (PECVD). A sacrificial etching process was employed for channel fabrication allowing for cross-sections with heights of 3 μm, ranging from 2 μm to 50 μm in width. Flow rates were measured for single channels and multichannel electroosmotic pump structures for pH levels ranging from 2.6 to 8.3, and zeta potentials were calculated for both silicon dioxide and silicon nitride surfaces. Flow rates as high as 0.086 μL∕min were measured for nitride multichannel pumps at applied electric fields of 300 V∕mm. The surface characteristics of PECVD nitride were analyzed and compared to more well-known oxide surfaces to determine the density of amine sites compared to silanol sites.  相似文献   

4.
Song W  Psaltis D 《Biomicrofluidics》2011,5(4):44110-4411011
We present a novel image-based method to measure the on-chip microfluidic pressure and flow rate simultaneously by using the integrated optofluidic membrane interferometers (OMIs). The device was constructed with two layers of structured polydimethylsiloxane (PDMS) on a glass substrate by multilayer soft lithography. The OMI consists of a flexible air-gap optical cavity which upon illumination by monochromatic light generates interference patterns that depends on the pressure. These interference patterns were captured with a microscope and analyzed by computer based on a pattern recognition algorithm. Compared with the previous techniques for pressure sensing, this method offers several advantages including low cost, simple fabrication, large dynamic range, and high sensitivity. For pressure sensing, we demonstrate a dynamic range of 0-10 psi with an accuracy of ±2% of full scale. Since multiple OMIs can be integrated into a single chip for detecting pressures at multiple locations simultaneously, we also demonstrated a microfluidic flow sensing by measuring the differential pressure along a channel. Thanks to the simple fabrication that is compatible with normal microfluidics, such OMIs can be easily integrated into other microfluidic systems for in situ fluid monitoring.  相似文献   

5.
Understanding the biological feeding strategy and characteristics of a microorganism as an actuator requires the detailed and quantitative measurement of flow velocity and flow rate induced by the microorganism. Although some velocimetry methods have been applied to examine the flow, the measured dimensions were limited to at most two-dimensional two-component measurements. Here we have developed a method to measure three-dimensional two-component flow velocity fields generated by the microorganism Vorticella picta using a piezoscanner and a confocal microscope. We obtained the two-component velocities of the flow field in a two-dimensional plane denoted as the XY plane, with an observation area of 455×341 μm2 and the resolution of 9.09 μm per each velocity vector by a confocal microparticle image velocimetry technique. The measurement of the flow field at each height took 37.5 ms, and it was repeated in 16 planes with a 2.50 μm separation in the Z direction. We reconstructed the three-dimensional two-component flow velocity field. From the reconstructed data, the flow velocity field [u(x,y,z),v(x,y,z)] in an arbitrary plane can be visualized. The flow rates through YZ and ZX planes were also calculated. During feeding, we examined a suction flow to the mouth of the Vorticella picta and measured it to be to 300 pl∕s.  相似文献   

6.
Ultrafast microfluidics using surface acoustic waves   总被引:2,自引:0,他引:2  
We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions can also be used for the rapid synthesis of 150–200 nm polymer∕protein particles or biodegradable polymeric shells in which proteins, peptides, and other therapeutic molecules are encapsulated within for controlled release drug delivery. The atomization of thin films behind a translating drop containing polymer solutions also gives rise to long-range spatial ordering of regular polymer spots whose size and spacing are dependent on the SAW frequency, thus offering a simple and powerful method for polymer patterning without requiring surface treatment or physical∕chemical templating.  相似文献   

7.
Dielectric particles flowing through a microfluidic channel over a set of coplanar electrodes can be simultaneously capacitively detected and dielectrophoretically (DEP) actuated when the high (1.45 GHz) and low (100 kHz–20 MHz) frequency electromagnetic fields are concurrently applied through the same set of electrodes. Assuming a simple model in which the only forces acting upon the particles are apparent gravity, hydrodynamic lift, DEP force, and fluid drag, actuated particle trajectories can be obtained as numerical solutions of the equations of motion. Numerically calculated changes of particle elevations resulting from the actuation simulated in this way agree with the corresponding elevation changes estimated from the electronic signatures generated by the experimentally actuated particles. This verifies the model and confirms the correlation between the DEP force and the electronic signature profile. It follows that the electronic signatures can be used to quantify the actuation that the dielectric particle experiences as it traverses the electrode region. Using this principle, particles with different dielectric properties can be effectively identified based exclusively on their signature profile. This approach was used to differentiate viable from non-viable yeast cells (Saccharomyces cerevisiae).  相似文献   

8.
Two microfluidic systems have been developed for specific analysis of L-glutamate in food based on substrate recycling fluorescence detection. L-glutamate dehydrogenase and a novel enzyme, D-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips containing 32 porous flow channels of 235 μm depth and 25 μm width and (ii) polystyrene Poros™ beads with a particle size of 20 μm. The immobilized enzymes recycle L-glutamate by oxidation to 2-oxoglutarate followed by the transfer of an amino group from D-4-hydroxyphenylglycine to 2-oxoglutarate. The reaction was accompanied by reduction of nicotinamide adenine dinucleotide (NAD+) to NADH, which was monitored by fluorescence detection (εex=340 nm, εem=460 nm). First, the microchip-based system, L-glutamate was detected within a range of 3.1–50.0 mM. Second, to be automatically determined, sequential injection analysis (SIA) with the bead-based system was investigated. The bead-based system was evaluated by both flow injection analysis and SIA modes, where good reproducibility for L-glutamate calibrations was obtained (relative standard deviation of 3.3% and 6.6%, respectively). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a pH of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining. The bead-based system demonstrated high selectivity, where L-glutamate recoveries were between 91% and 108% in the presence of six other L-amino acids tested.  相似文献   

9.
We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of −0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.  相似文献   

10.
Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW.  相似文献   

11.
Dielectrophoresis (DEP) has been shown to have significant potential for the characterization of cells and could become an efficient tool for rapid identification and assessment of microorganisms. The present work is focused on the trapping, characterization, and separation of two species of Cryptosporidium (C. parvum and C. muris) and Giardia lambia (G. lambia) using a microfluidic experimental setup. Cryptosporidium oocysts, which are 2-4 μm in size and nearly spherical in shape, are used for the preliminary stage of prototype development and testing. G. lambia cysts are 8–12 μm in size. In order to facilitate effective trapping, simulations were performed to study the effects of buffer conductivity and applied voltage on the flow and cell transport inside the DEP chip. Microscopic experiments were performed using the fabricated device and the real part of Clausius—Mossotti factor of the cells was estimated from critical voltages for particle trapping at the electrodes under steady fluid flow. The dielectric properties of the cell compartments (cytoplasm and membrane) were calculated based on a single shell model of the cells. The separation of C. muris and G. lambia is achieved successfully at a frequency of 10 MHz and a voltage of 3 Vpp (peak to peak voltage).  相似文献   

12.
Studying enzymatic bioreactions in a millisecond microfluidic flow mixer   总被引:1,自引:0,他引:1  
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions.  相似文献   

13.
14.
Ability to perform cytogenetic interrogations on circulating tumor cells (CTCs) from the blood of cancer patients is vital for progressing toward targeted, individualized treatments. CTCs are rare compared to normal (bystander) blood cells, found in ratios as low as 1:109. The most successful isolation techniques have been immunocytochemical technologies that label CTCs for separation based on unique surface antigens that distinguish them from normal bystander cells. The method discussed here utilizes biotin-tagged antibodies that bind selectively to CTCs. The antibodies are introduced into a suspension of blood cells intending that only CTCs will display surface biotin molecules. Next, the cell suspension is passed through a microfluidic channel that contains about 9000 transverse, streptavidin coated posts. A CTC making contact with a post has the opportunity to engage in a biotin-streptavidin reaction that immobilizes the cell. Bystander blood cells remain in suspension and pass through the channel. The goal of the present study is to establish the technical performance of these channels as a function of antigen density and operating conditions, especially flow rate. At 18 μL/min, over 70% of cells are captured at antigen densities greater than 30 000 sites/cell while 50% of cells are captured at antigen densities greater than 10 000. It is found that lower flow rates lead to decreasing cell capture probabilities, indicating that some streamlines develop which are never close enough to a post to allow cell-post contact. Future modeling and streamline studies using computational fluid dynamics software could aid in optimization of channel performance for capture of rare cells.  相似文献   

15.
Wang C  Jalikop SV  Hilgenfeldt S 《Biomicrofluidics》2012,6(1):12801-1280111
Oscillating microbubbles of radius 20–100 μm driven by ultrasound initiate a steady streaming flow around the bubbles. In such flows, microparticles of even smaller sizes (radius 1–5 μm) exhibit size-dependent behaviors: particles of different sizes follow different characteristic trajectories despite density-matching. Adjusting the relative strengths of the streaming flow and a superimposed Poiseuille flow allows for a simple tuning of particle behavior, separating the trajectories of particles with a size resolution on the order of 1 μm. Selective trapping, accumulation, and release of particles can be achieved. We show here how to design bubble microfluidic devices that use these concepts to filter, enrich, and preconcentrate particles of selected sizes, either by concentrating them in discrete clusters (localized both stream- and spanwise) or by forcing them into narrow, continuous trajectory bundles of strong spanwise localization.  相似文献   

16.
A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate.  相似文献   

17.
Field-free particle focusing in microfluidic plugs   总被引:1,自引:0,他引:1  
Kurup GK  Basu AS 《Biomicrofluidics》2012,6(2):22008-2200810
Particle concentration is a key unit operation in biochemical assays. Although there are many techniques for particle concentration in continuous-phase microfluidics, relatively few are available in multiphase (plug-based) microfluidics. Existing approaches generally require external electric or magnetic fields together with charged or magnetized particles. This paper reports a passive technique for particle concentration in water-in-oil plugs which relies on the interaction between particle sedimentation and the recirculating vortices inherent to plug flow in a cylindrical capillary. This interaction can be quantified using the Shields parameter (θ), a dimensionless ratio of a particle’s drag force to its gravitational force, which scales with plug velocity. Three regimes of particle behavior are identified. When θ is less than the movement threshold (region I), particles sediment to the bottom of the plug where the internal vortices subsequently concentrate the particles at the rear of the plug. We demonstrate highly efficient concentration (∼100%) of 38 μm glass beads in 500 μm diameter plugs traveling at velocities up to 5 mm/s. As θ is increased beyond the movement threshold (region II), particles are suspended in well-defined circulation zones which begin at the rear of the plug. The length of the zone scales linearly with plug velocity, and at sufficiently large θ, it spans the length of the plug (region III). A second effect, attributed to the co-rotating vortices at the rear cap, causes particle aggregation in the cap, regardless of flow velocity. Region I is useful for concentrating/collecting particles, while the latter two are useful for mixing the beads with the solution. Therefore, the two key steps of a bead-based assay, concentration and resuspension, can be achieved simply by changing the plug velocity. By exploiting an interaction of sedimentation and recirculation unique to multiphase flow, this simple technique achieves particle concentration without on-chip components, and could therefore be applied to a range of heterogeneous screening assays in discrete nl plugs.  相似文献   

18.
Increasingly, invitro culture of adherent cell types utilizes three-dimensional (3D) scaffolds or aggregate culture strategies to mimic tissue-like, microenvironmental conditions. In parallel, new flow cytometry-based technologies are emerging to accurately analyze the composition and function of these microtissues (i.e., large particles) in a non-invasive and high-throughput way. Lacking, however, is an accessible platform that can be used to effectively sort or purify large particles based on analysis parameters. Here we describe a microfluidic-based, electromechanical approach to sort large particles. Specifically, sheath-less asymmetric curving channels were employed to separate and hydrodynamically focus particles to be analyzed and subsequently sorted. This design was developed and characterized based on wall shear stress, tortuosity of the flow path, vorticity of the fluid in the channel, sorting efficiency and enrichment ratio. The large particle sorting device was capable of purifying fluorescently labelled embryoid bodies (EBs) from unlabelled EBs with an efficiency of 87.3% ± 13.5%, and enrichment ratio of 12.2 ± 8.4 (n = 8), while preserving cell viability, differentiation potential, and long-term function.  相似文献   

19.
Nanochannels offer a way to align and analyze long biopolymer molecules such as DNA with high precision at potentially single basepair resolution, especially if a means to detect biomolecules in nanochannels electronically can be developed. Integration of nanochannels with electronics will require the development of nanochannel fabrication procedures that will not damage sensitive electronics previously constructed on the device. We present here a near-room-temperature fabrication technology involving parylene-C conformal deposition that is compatible with complementary metal oxide semiconductor electronic devices and present an analysis of the initial impedance measurements of conformally parylene-C coated nanochannels with integrated gold nanoelectrodes.No two cells are exactly alike, either in terms of their genome, the genomic epigenetic modification of the genome, or the expressed proteome.1 The genomic heterogeneity of cells is particularly important from an evolutionary perspective since it represents the stages of evolution of a population of cells under stress.2 Because of the important variances in the genome that occur from cell to cell, it is critical to develop genomic analysis technologies which can do single-cell and single molecule genomic analysis as an electronic “direct read” without intervening amplification steps.3, 4, 5, 6, 7, 8 In this paper, we present a technique which uses conformal coverage of nanochannels containing nanoelectrodes using a room-temperature deposition of parylene-C, a pin-hole-free, excellent electrical insulator with low autofluorescence.9 This procedure should open the door to integration of many kinds of surface electronics with nanochannels. One of the most difficult aspects in introducing electronics into nanochannel technology is the sealing of nanochannel so that the electrodes are not compromised by harsh chemicals or high temperatures. There are various methods to form nanochannels containing nanoelectrodes, including wafer bonding techniques,10 removal of sacrificial materials,11 and nonuniform sputtering deposition.12 Methods employing a sacrificial layer removal show the greater compatibility to electronic integration, but current methods to remove sacrificial materials require either high temperatures11 or harsh chemicals.13, 14The basic device consisted of 12 mm long, 100 nm wide, 100 nm high nanochannels interrogated by 22 pairs of 30 nm wide gold nanoelectrodes. The outline of the fabrication process is shown in Fig. Fig.1.1. The fabrication process was carried out on a standard 4 in. single-side polished p-type ⟨100⟩ silicon wafer with 100 nm of dry thermal oxide on the top as an insulating layer, which also helped the wetting of the nanochannels. The first step involved nanofabrication of the 25 nm thick nanoelectrodes on the SiO2 top of the wafer using electron beam lithography (EBL). External gold connection pads were constructed using standard metal lift-off techniques and photolithography to connect to the nanoelectrodes. A Raith E-Line e-beam writing system (Raith USA, Ronkonkoma, NY) was used to expose polymethyl methacrylate (PMMA) for metal lift-off. Figure Figure1a1a shows a scanning electron microscopy (SEM) image of the nanoelectrodes. The 100 nm sealed nanochannels were constructed using sacrificial removal techniques. We used EBL to expose a 100 nm thick film of PMMA over the gold nanolines in the region around the nanolines, leaving behind lines of unexposed sacrificial layer of PMMA. We next evaporated 25 nm of SiO2 over the nanolines to improve the surface wetting properties of nanochannel and then conformally coated with 4 μm thick of parylene-C [poly(chloro-p-xylylene)] using a Specialty Coating Systems model PDS 2010 parylene coating system (SCS Systems, Indianapolis, IN). Access holes for the gold electrodes and the feeding channels were etched through by oxygen plasma and 1:10 buffered oxide etchant. To avoid autofluorescence induced in parylene by an active plasma15 and ambient UV radiation,16 it is important not to expose the remaining parylene with plasma and to keep the samples in the dark. The sacrificial removal of PMMA in the nanochannels was done in four steps: (1) soaking the chip in 55 °C 1165 MicroChem resist remover (MicroChem, Newton, MA) for 36 h, (2) room-temperature soaking in 1,2-dichloroethane for 12 h, (3) soaking in room-temperature acetone for 12 h, and (4) drying the nanochannels by critical point drying (CPD-030, BAL-TEC AG, Principality of Liechtenstein), which served to prevent the collapse of the nanochannel resulting from surface tension of the acetone.Open in a separate windowFigure 1(a) SEM image of gold nanoelectrodes; scale bar is 200 nm. (b) 100×100 nm2 PMMA nanoline is written over the gold nanoelectrodes by exposure of the surrounding PMMA. (c) Parylene-C conformal coating over the PMMA nanoline. PMMA is dissolved and parylene-C etched by reactive ion etching.Conductance measurements were done using ac techniques. The ac impedance Ztot of an insulating ionic fluid such as water between electrodes is a complex subject.17 The most general model for the complex impedance of an electrode in ionic solution is typically modeled as the Randle circuit, which is shown in Fig. Fig.22.17 There are two major contributions to the imaginary part of the impedance: the capacitance of the double layer (Cdl), which is purely imaginary and has no dc conductance, and the impedance due to charge transfer resulting in electrochemical reactions at the electrode∕electrolyte interface, which can be modeled as a contact resistor (RCT), which is given by the Butler–Volmer equation, which describes the I-V characteristic curve when electrochemical reactions occur at the electrode,18 in series with a complex Warburg impedance (ZW) which represents injected charge transport near the electrode;19 more details can be found in Ref. 20. Since we applied a 10 mV rms ac voltage with no dc offset in our measurements, electrochemical reactions are negligible, which means no electrochemical charge transfer occurred and as a result RCT goes to infinity. We have drawn a gray box around the elements connected to the Warburg impedance branch of the circuit to show that they are negligible in our analysis.Open in a separate windowFigure 2The equivalent circuit of the nanoelectrodes in contact with water lying atop an insulating SiO2 film which covers a silicon substrate. The elements in the gray boxes can be ignored in our measurements since there is no hydrolysis at low voltage, while the elements within the dotted box are coupling reactances to the underlying p-doped silicon wafer.In the case of no direct charge injection, the electrodes are coupled by the purely capacitive dielectric layer impedance Cdl to the solvent and are also coupled capacitively by the dielectric SiO2 film capacitance Cox to the underlying p-doped silicon semiconductor. We model the semiconductor as a purely resistive material with bulk resistivity ρSi. The value of Cdl∕area is on the order of ϵϵoκ, where ϵ is the dielectric constant of water (about 80) and κ is the Debye screening parameter of the counterions in solution: κ=ϵϵokBTe2Σicizi2,20 where ci is the bulk ion concentration of charge zi. At our salt molarity of 50 mM (1∕2 Tris∕Borate∕EDTA (TBE) buffer), Cdl is approximately 30 μF∕cm2 using 1∕κ∼1 nm.In Fig. Fig.3,3, we show the ac impedance measurements between pairs nanoelectrodes for both dry and TBE buffer wet nanochannels. The electrodes are capacitively coupled to the underlying silicon substrate through an oxide capacitor Cox. We model the doped silicon wafer as pure resistors, so there is an R1 that connects both Cox, and each Cox is connected to the ground with an R2. Curve fitting was done by using the 3SPICE circuit emulation code (VAMP Inc., Los Angeles, CA). We therefore obtained the following parameters for the dry curve: Cox=1.32 nF, R1=17.5 μΩ, and R2=32.8 kΩ. R1 is not sensitive in the fit as long as it is smaller than the impedance of Cox. Given ρSi of the wafer of 1–10 Ω cm, R2 should be on the order of 103 Ω, which is slightly smaller than our fitting results. The same parameters for the wafer coupling parameters were then used for fitting the impedance measurements for wet channels. For TBE buffer solution in the nanochannel, curve fitting yields Cdl=50 pF and Rsol=105 Ω. However, given the dimension of our nanochannels, we should get a transverse resistance R∼109 Ω. One possible explanation for this difference is that the evaporated SiO2 film which was put over the PMMA is porous and allows buffer to penetrate the oxide film,21 but given that the film is only 25 nm thick this would at most increase the cross section by one order of magnitude. However, it is known that there is a high fractional presence of mobile counterions associated with the charged channel walls.22 To calculate exact conductance contribution from the surface charges is a tricky business, but since the surface-to-volume ratios in our nanochannels are much greater than the slits, a larger conductance enhancement can be expected, and more work needs to be done.Open in a separate windowFigure 3ac impedance spectra of TBE buffer solution in a transchannel measurement between adjacent pairs of nanoelectrodes separated by 135 μm. The red circles are data for a dry channel and the solid red line is the fit to the model shown in the upper right hand corner. The green squares and dashed green line are for a nanochannel wet with TBE buffer.We have presented a way to fabricate a nanochannel integrated with electrodes. This technology opens up opportunities for electronic detection of charged polymers. With our techniques to fabricate nanoelectrodes with nanochannels, it should be possible to include integrated electronics with nanofludics, allowing the electronic observation of a single DNA molecule at high spatial resolution. However, the present design has problems. Most of the ac went through the silicon wafer instead of the solution. To enhance the sensitivity, we need either to increase the ratio of current going through the liquid to the current going through the wafer or to have a circuit design that picks up the changes in Cdl and Rsol.  相似文献   

20.
A droplet-based micro-total-analysis system involving biosensor performance enhancement by integrated surface-acoustic-wave (SAW) microstreaming is shown. The bioreactor consists of an encapsulated droplet with a biosensor on its periphery, with in situ streaming induced by SAW. This paper highlights the characterization by particle image tracking of the speed distribution inside the droplet. The analyte-biosensor interaction is then evaluated by finite element simulation with different streaming conditions. Calculation of the biosensing enhancement shows an optimum in the biosensor response. These results confirm that the evaluation of the Damköhler and Peclet numbers is of primary importance when designing biosensors enhanced by streaming.It has been pointed out that biosensing performances can be limited by the diffusion of the analytes near the sensing surface.1 In the case of low Peclet number hydrodynamic flows, typical of microfluidic systems, molecule displacements are mainly governed by diffusive effects that affect time scales and sensitivity. To overcome this problem, the enhancement of biosensor performance by electrothermal stirring within microchannels was first reported by Meinhart et al.2 Other authors3, 4 numerically studied the analyte transport as a function of the position of a nanowire-based sensor inside a microchannel, stressing on the fact that the challenge for nanobiosensors is not the sensor itself but the fluidic system that delivers the sample. Addressing this problem, Squires et al.5 developed a simple model applicable to biosensors embedded in microchannels. However, the presented model is limited to the case of a steady flow. The use of surface-acoustic waves (SAWs) for stirring in biomicrofluidic and chemical systems is becoming a popular investigation field,6, 7, 8, 9 especially to overcome problems linked to steady flows by enhancing the liquid∕surface interaction.1, 10, 11 The main challenges that need to be addressed when using SAW-induced stirring are the complexity of the flow and its poor reproducibility. However, some technical solutions were proposed to yield a simplified microstreaming. Yeo et al. presented a centrifugation system based on SAW that produces the rotation of the liquid in a droplet in a reproducible way by playing on the configuration of the transducers and reflectors,12 and presented a comprehensive experimental study of the three-dimensional (3D) flow that causes particle concentration in SAW-stirred droplets,13 revealing the presence of an azimuthal secondary flow in addition to the main vortexlike circular flow present in acoustically stirred droplets. The efficiency of SAW stirring in microdroplets to favorably cope with mass transport issues was finally shown by Galopin et al.,14 but the effect of the stirring on the analyte∕biosensor interaction was not studied. It is expected to overcome mass transport limitations by bringing fresh analytes from the bulk solution to the sensing surface.The studied system, described in Fig. Fig.1,1, consists of a microliter droplet microchamber squeezed between a hydrophobic piezoelectric substrate and a hydrophobic glass cover. Rayleigh SAWs are generated using interdigitated transducers (interdigital spacing of 50 μm) laid on an X-cut LiNbO3 substrate.1, 15, 16 The hydrophobicity of the substrate and the cover are obtained by grafting octadecyltrichlorosilane (OTS) self-assembled monolayers (contact angle of 108° and hysteresis of 9°). To do so, the surface is first hydroxylized using oxygen plasma (150 W, 100 mT, and 30 sccm3 O2) during 1 min and then immersed for 3 h into a 1 mM OTS solution with n-hexane as a solvent.Open in a separate windowFigure 1(a) General view of the considered system. (b) Mean value of the measured speeds within the droplet as a function of the inlet power before amplification.When Rayleigh waves are radiated toward one-half of the microchamber, a vortex is created in the liquid around an axis orthogonal to the substrate due to the momentum transfer between the solid and the liquid. This wave is generated under the Rayleigh angle into the liquid.Speed cartographies of the flow induced in the droplet are realized using the particle image tracking technique for different SAW generation powers. To do so, instantaneous images of the flow are taken with a high-speed video camera at 200 frames∕s and an aperture time of 500 μs on a 0.25 μl droplet containing 1 μm diameter fluorescent particles. Figure Figure11 shows the mean speed measured in the droplet as a function of the inlet power. The great dependence of the induced mean speed with the SAW power enables a large range of flow speeds in the stirred droplet. Moreover, the flow was visualized with a low depth of field objective. It was found to be circular and two dimensional (2D) in a large thickness range of the droplet.The binding of analytes to immobilized ligands on a biosensor is a two step process, including the mass transport of the analyte to the surface, followed by a complexation step,AbulkkmAsurface+Bka,kdAB(1)with km as the constant rate for mass transport from and to the sensor, and ka and kd as the constant rates of association and dissociation of the complex.At the biosensor surface, the reaction kinetics consumes analytes but their transport is limited by diffusive effects. In this case, the Damköhler number brings valuable information by comparing these two effects. Calling the characteristic time of reaction and diffusion, respectively, τC and τM, the mixing time in diffusion regime can be approximated by τMh2D with D as the diffusion coefficient and h a characteristic length of the microchannel. Calling RT the ligand concentration on the surface in mole∕m2, the Damköhler number (Da) can be written asDa=τMτC=kaRThD.(2)Depending on the type of reaction, the calculation of Da helps determine if a specific biointeraction will benefit from a mass SAW-based microstreaming. If the Damköhler number is low, the reaction is slow compared to mass transport and the reaction will not significantly benefit from microstirring. For example, the hybridization of 19 base single stranded DNA in a microfluidic system with a characteristic length of 500 μm is characterized by a Damköhler number of 0.07 and is therefore not significantly influenced by mass transport. On the contrary, the binding of biotin to immobilized streptavidin is characterized by a Da number of approximately 104. In this case, the stirring solution will significantly improve the reaction rate.COMSOL numerical simulations were carried out to study the efficiency of the SAW stirring in the case of a droplet-based microbioreactor with a diameter of 1 mm. Assuming a 2D flow, the simulated model takes into account the convective and diffusive effects in the analyte-carrying fluid and the binding kinetics on the biosensor surface. This approach was thoroughly developed by Meinhart et al.2On the biosensor surface, the following equations are solved:Bt=kacs(RTB)kdB,(3)Bt=D|cy|y=0(4)with c as the local concentration of analytes in the droplet and B as the surface concentration of bound analytes on the biosensor surface. Simulation results show that a depleted zone is formed near the biosensor in the case of an interaction without stirring. This zone is characterized by a low concentration of analytes and results from the trapping of analytes on the biosensor surface, thus creating a concentration gradient on the vicinity of the biosensor. When stirring is applied, the geometry of the depleted zone is modified, as it is pushed in the direction of the flow. The geometry of the depleted zone then depends on many parameters, among which the diffusion coefficient D, the speed distribution of the flow (not only near the biosensor but also in the whole microfluidic system), and the reaction kinetics on the biosensor. In our case, which is assimilated to a simple circular flow, the depleted zone reaches a permanent state consisting of an analyte-poor layer situated in the exterior perimeter of the stirred droplet. The diffusion of analytes is then limited again by diffusion from the inner part of the droplet toward its exterior perimeter (see Fig. Fig.22).Open in a separate windowFigure 2(a) Mean concentration of bound analytes vs time for different mean flow speeds. (b) The obtained concentration profiles with and without circular stirring, t=10 000 s.The initial analyte and receptor concentrations are, respectively, 0.1 nM in the solution and 3.3×10−3 nM m on the biosensor surface, the diffusion coefficient is D=10−11 m2 s−1, and the reaction constants are ka=106 M−1 s−1 and kd=10−3 s−1. Simulations show that the mean concentration of bound analytes highly increases with the flow speed, improving the efficiency of the biosensing device. To evaluate the benefits of in situ microstreaming with SAW, the same simulations were conducted for Da numbers ranging from 104 to 108 M−1∕s, by ranging the diffusion coefficient from 4×10−12 to 4×10−9 m2∕s, and the association coefficient ka from 104 to 108 M−1∕s. The enhancement factor of analyte capture, defined as the ratio of the binding rate with streaming B and the binding rate without streaming B0, is plotted in Fig. Fig.33 for different values of Da. Calculations are done in the case of a mean flow speed of 0.5 mm∕s.Open in a separate windowFigure 3(a) Enhancement factor (defined as the ratio between binding rate with streaming B and binding rate without streaming B0) for different Damkhöler numbers and (b) normalized enhancement factor for different Peclet numbers.One can notice the saturation of the enhancement factor curve for large value of Da to the value of 3.5 for high Da. This can be explained by the fact that for large kaDa ratios, the analytes, which normally require penetration in the depleted zone by diffusion, do not have time to interact with the biosensor when they pass in the vicinity of its surface. The efficiency of the streaming is then reduced for large values of Da. In the case of our specific flow configuration, the enhancement factor reaches 3.2 for the interaction of streptavidin on immobilized biotin (Da=103).The reported simulation results can be compared to an experimental value obtained using the droplet-based surface plasmon resonance sensor streamed in situ using SAW reported by Yeo et al.12 By monitoring the streptavidin∕biotin binding interaction on an activated gold slide, they showed that SAW stirring brings an improvement factor of more than 2. This difference can be accounted to the high complexity of the induced 3D flow, which was modeled in a simple manner in our calculations.Other factors must be taken into account when optimizing the improvement factor, such as the flow velocity and the characteristic length of the mixing. To do so, the Peclet number allows the comparison of the convective and diffusive effects.17 For δC a typical variation in concentration on the distance h, the Peclet number is given byPe=UhD.(5)A significantly high Peclet number causes a decrease in biosensing efficiency as the analytes do not have enough time to interact with the biosensing surface by diffusion through the analyte-poor layer. On the contrary, the case of a low Peclet number corresponds to the diffusion-limited problem. Therefore, for each Damköhler number, there is a Peclet number optimizing this factor. To illustrate this fact, Fig. Fig.3b3b shows the calculation of the enhancement factor as a function of the Peclet number for a given Da.In this paper, we showed that surface loading of typical analytes on a droplet-based biosensor can be highly increased by SAW microstirring. The system permits the enhancement of the biosensing performances by the continuous renewal of the analyte-carrying fluid near the sensing surface. Thanks to mean flow speeds measured up to 1800 μm∕s, the SAW microstreaming can be beneficial to the biosensing of a large range of analyte∕ligand interactions. In addition to the biosensing performance improvement, such a method can be easily integrated in micro-micro-total-analysis systems, which makes it a convenient tool for liquid handling in future biochips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号