首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
高中代数(甲种本)第二册77页上有这样一道习题: 已知数列{a_n}的项满足 a_1=b a_(n+1)=ca_n+d(c≠1),证明这个数列的通项公式是 a_n=(bc~n+(d-b)c~(n-1)-d)/(c-1) 我们把这题推广成: 已知数列{a_n}的项满足 a_1=a a_(n+1)-ba_n=c_0+c_1n+c_2n~2+…+c_mn~m,其中b≠0,求这个数列的通项公式. 这类问题,可以用待定系数法解决.以  相似文献   

2.
我们考虑这样的数列:已知数列{a_n}的a_1,并且递推公式为a_(n+1)=qa_n+b_1P_1~n+b_2p_2~n+b_3,其中q,P_1,P_2,b_1,b_2,b_3为常数,且q≠0,P_1,P_2≠1,P_1≠P_2,这个数列的通项公式如何求法,我们分以下几种情况来讨论这种问题.一、q≠1的情况(一)当q≠pi(i=1,2)时,设a_n=u_n+a_1p_1~n+a_2p_2~n+a_3,其中a_1、a_2、a_3为待定系数.将此式代入上面的递推公式中,得  相似文献   

3.
<正>求数列的通项公式是高考的重点之一,因此掌握数列通项公式的求法至关重要,本文就构造辅助数列求通项公式的几种情况进行论述。1.递推公式形如:a_n=pa_(n-1)+q(p,q为常数,pq(p-1)(q-1)≠0)。处理方法:(1)利用待定系数法变形为a_n+λ=p(a_(n-1)+λ),即构造数列{a_n+λ}为公比为p  相似文献   

4.
<正>人教版《数学》必修5中有这样一道复习题:已知数列{a_n}中,a_1=5,a_2=2,a_n=2a_(n-1)+3a_(n-2)(n≥3),对这个数列的递推公式作一研究,能否写出它的通项公式?课本中关于递推数列尤其二阶递推数列求通项的内容阐述很少,此题的出现很是突兀,既然是探究题就会有不同解读和解法,待定系数法转化降阶就是其一,下面对待定系数法求递推数列的  相似文献   

5.
数列递推公式的意义:若已知数列的第一项a_1且任一项a_n与前一项a_(n-1)之间的关系可以用一个公式表示.类型1形如a_(n+1)=a_n+f(n).解法:把原递推公式转化为a_(n+1)-a_n=f(n),利用累加法(逐差相加法)求解.例1已知数列{a_n}满足a_1=1/2,a_(n+1)=  相似文献   

6.
<正>数列问题中由递推公式求通项公式的题目屡见不鲜,我们曾经学过一些方法,如累加累乘、配凑法等,但是这些方法能解决的题型有限,而且不一定就是最简单的.下面笔者为大家介绍两种方法:特征方程法和待定系数法.一、特征方程求通项公式先以一道题为例.例1已知a_(n+2)=5a_(n+1)-6a_n,a_1=0,a_2=1,求a_n.步骤1设特征方程x2=5x-6,其中x2=5x-6,其中x2对应a_(n+2),5x对应5a_(n+1),-6对应-6a_n.  相似文献   

7.
<正>求递推数列的通项公式的方法较多,技巧性很强.本文主要探究形如a_(n+1)=pa_n+f(n)(p为常数,n∈N*)的递推数列通项公式的求法.一、引例例1已知数列{a_n}满足a_1=3,a_(n+1)=2a_n+5n+1(n∈N*),求该数列的通项公式.解(辅助数列法)由a_(n+1)=2a_n+5n+1,得a_(n+1)+5(n+1)+6=2(a_n+5n+6).(1)  相似文献   

8.
<正>有关数列前n项和不等式的试题是当下高考的一大热点,今介绍几种常用的应对策略.策略1待定系数法放缩通项例1(2014年全国高考题)已知数列{a_n}满足a_1=1,a_(n+1)=3a_n+1.(1)证明:{a_n+1/2}是等比数列,并求{a_n}的通项公式;(2)证明:1/a_1+1/a_2+…+1/a_n<3/2.  相似文献   

9.
已知数列{a_n}的首项为a_1,并且有递推关系式a_(n+1)=qa_n+d其中q,d为常数,且q■0,则称此数列为一阶线性递推数列,简记为递推数列a_(n+1)=qa_n+d.现在,我们来讨论递推数列a_(n+1)=qa_n+d的通项公式,其推导方法有以下几种:  相似文献   

10.
给了数列的递推公式和初始值,起何求它的通项呢?下面通过例题说明求这类数列通项公式的一些基本思路和方法。例1 已知数列{a_n}的项满足: 求通项a_n。我们知道,数列的项a_n是自然数n的函数,递推式是一个循环方程, 实际上是未知数为a_n,a_(n-1)……a_2的函数方程组: 根据递推数列的这一本质特征,求通项a_n就是解方程组(*),求得未知函数a_n。  相似文献   

11.
由递推公式求数列的通项,这个问题学生掌握起来是比较困难的。如何利用已经学过的知识,找出其间的规律,化难为易,是解决这种难题的关键。中学课本中等差数列和等比数列,其通项可以写成递推公式的形式。等差数列:a_n=a_(n-1)+d,(n>1);等比数列:a_n=a_(n-1)q,(n>1)。由这两个递推公式,反过来求其通项是很容易的。如果给出形如 a_(?)—a_n=a(a_n—a_(n-1)或形如 a_(n+1)—a_n=(a_n—a_(n-1)+b(其中 n≥1,a、b 是常数)的递推公式,那么如何求出已知数列的通项 a_n 呢?解决这种问题的方法分两个步骤:第一,把所给的递推公式先化成等差或等比数列  相似文献   

12.
递推方法     
(本讲适合高中) 数列是初等数学的一个重要内容.在解数列问题时,经常会遇到下面一类题目: 已知:数列{a_n}满足a_1=2,a_2=3,a_(n+1)=3a_n-2a_(n-1). 求数列{a_n}的通项公式. 这种已知初始值和递推公式求通项公式的题目相当多,探讨它们解法的文章也相当  相似文献   

13.
根据给出的数列的递推关系,求它的通项公式中,用特征方程求数列的通项公式,是非常有效的方法。例如,已知数列{a_n}具有关系a_1=3~(1/2),且a_(n+1)=1/2 a_n-3,求a_n的表达式,可用下面方法来解。∵a_(n+1)=1/2 a_n-3,把它两边同加上6,得a_(n+1)+6=1/2 a_n+3=1/2(a_n+6)。  相似文献   

14.
<正>近几年在高考和竞赛中频频出现求形如a_(n+1)=(pa_n+q)/(ra_n+s) (ps≠qr,r≠0)的一类递推数列的通项的题型,难度较大,笔者试图利用待定系数法给求此类递推数列的通项的一种有效方法,供读者参考。例1(2009年全国高中数学联赛陕西省预赛二试第一题)数列{a_n}满足a_1=4,a_(n+1)a_n+6a_(n+1)-4a_n-8=0,记b_n=6/(a_n-2)  相似文献   

15.
<正>在数列中有一类重要的递推数列{a_n},需要求它的通项公式,这类数列满足条件:a_1=α,a_2=β,且a_(n+2)=pa_(n+1)+qa_n(其中p,q均为常数).如何求其通项公式a_n呢?本文用三种不同解法加以阐述,以飨读者.一、构造法  相似文献   

16.
递推数列问题在高考中常以压轴题的题型出现,且由递推关系确定其通项往往是解决问题的关键.求递推数列通项公式的方法有多种:定义法、公式法(如利用公式a_n=S_n-S_(n-1)(n≥2)、累加法(a_(n 1)-a_n=f(n),f(n)可求前n项和,累积法(a_(n 1)=g(n)a_n,g(n)可求前n项积)、迭代法、构造法(待定系数法)、分类讨论、数学归纳法等.下面通过典型例子重点介绍其中两类方法.  相似文献   

17.
<正>数列的通项公式是高考重点考查的知识点之一,求数列通项公式的方法也很多,在具体的问题中选择最适当的方法来解决是重中之重。本文主要介绍用特征根法求数列通项公式。若常系数齐次线性递归数列的递归关系为:a_(n+k)=c_1a_(n+k-1_+c_2a_(n+k-2)+…+c_ka_n,则称方程xk=c_1xk=c_1x(k-1)+c_2x(k-1)+c_2x(k-2)+…+c_k为其特征方程,方程的根称为{a_n}的特征根。定理:如果x_1,x_2是递推关系a_n=  相似文献   

18.
<正>通过递推关系求数列的通项公式,是高考的热点和难点.笔者在平时的数学学习和解题过程中不断总结、反思,针对如何处理出现在递推数列中的干扰项,构造出熟悉的新数列,归纳得到一些求通项公式方法,现叙述如下.一、a_(n+1)=qa_n+f(n)型数列对于满足a_(n+1)=qa_n+f(n)的数列{a_n},  相似文献   

19.
<正>在数列这一章中,由递推公式求通项公式是本章的一个重要知识内容,也是一个难点与考点.以下几类递推数列的通项公式我们是可以解决的:(1) a_(n+1)=pa_n+A(n),其中A(n)为整式;(2) a_(n+1)=pa_n+qn;(3) a_(n+1)=pa+n+A(n) qn;(3) a_(n+1)=pa+n+A(n) qn,其中A(n)为整式.由此引发思考,对于形如a_(n+1)=pa_n+B(n),其中B(n)为分式,此类递推数列是否  相似文献   

20.
在有关数列的问题中,我们有时会遇到已知数列的首项a_1(或a_1、a_2)及数列中连续两项或三项的递推方程(有的书中称为循环方程或差分方程)如a_n+1=Ma_n+N;a_(n+2)=Ma_(n+1)+Na_n,要求写出它的通项公式。我们通常采用的方法是由已知写出数列的前几项,接着通过观察、归纳,猜想出一个通项公式,最后用数学归纳法予以证明。然而有些数列的通项公式,不是那么容易归纳出来的,如有名的斐波那契数列(即后面的例4)便是如此。怎么办呢?本文通过数例试图说明解决此类问题的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号