首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

2.
例 1 已知x >0 ,求函数 y =2x2 +3x的值域 .错解 ∵y=2x2 +3x=2x2 +1x +2x≥ 33 2x2 ·1x· 3x=3 3 6.故所求函数的值域为 [3 3 6,+∞ ) .剖析 由于方程 2x2 =1x =2x 无解 ,即等号不能成立 ,故求解错误 .正解 y=2x2 +3x=2x2 +32x+32x≥ 33 2x2 · 32x· 32x=323 3 6.故所求函数值域为 323 3 6,+∞ .例 2 已知 1≤a+b≤ 5 ,-1≤a-b≤ 3 ,求 3a -2b的取值范围 .错解 ∵ 1≤a+b≤ 5 ,①-1≤a-b≤ 3 ,②∴ 0 ≤ (a +b) +(a-b)≤ 8,∴ 0≤a≤ 4,③∴ 0 ≤ 3a≤ 12 ,又∵ 1≤a+b≤ 5 ,   -3≤-a +b≤ 1,∴ -2 ≤ (a +b) +( -a+b)≤ 6,∴ -…  相似文献   

3.
一个不等式的下界估计   总被引:2,自引:0,他引:2  
《数学通报》2 0 0 2年 8月号问题 1 388为 :已知 x>0 ,y>0 ,且 x+ y=1 ,求证 :( x + y ) ( 11 + x+ 11 + y)≤ 4 33.( 1 )本文旨在给出不等式 ( 1 )左式的下界估计 .定理 若 x>0 ,y>0 ,且 x + y=1 ,则( x + y ) ( 11 + x+ 11 + y) >1 +22 . ( 2 )证明 令 u=xy,则 0 ( 1 + 22 ) 2 ( 1 + 2 u) ( 32 + u2 + 22 + u2 ) >32 + 2 ( 1 + 2 u) ( 3+ 2 2 + u2 ) >( 32 +2 ) ( 2 + u2 ) 6 u+ 2 ( 1 + 2 u) 2 + u2 >( 32+ 2 ) u2 + 2 2 .( * )∵ ( 32 + 2 ) u≤ ( 32 + 2 )×…  相似文献   

4.
巧算平均数     
【例1】 已知a>0,b>0且a+b=1,求证a+12+b+12≤2.证明:设x=a+12,y=b+12且x+y=k则射线x+y-k=0与圆弧x2+y2=2有交点,所以|-k|2≤2即|k|≤2.∴a+12+b+12≤2【例2】 已知实数x,y满足(x-3)2+(y-3)2=92,则yx的最大值是    .解:令yx=k,则直线kx-y=0与圆(x-3)2+(y-3)2=92有交点.所以|3k-3|k2+1≤32.整理,得k2-4k+1≤0.解之,得2-3≤k≤2+3.故yx的最大值是2+3.【例3】 求函数y=2-sinx2-cosx的值域.解:令u=cosx,v=sinx,则直线yu-v-2y+2=0与圆u2+v2=1有交点.∴|-2y+2|y2+1≤1整理,得3y2-8y+3≤0.解之,得4-73≤y≤4+73故所求函数的值域为[4-73,4+73…  相似文献   

5.
例1 已知x、y是实数,且满足 x2+xy+y2—2=0,求x2—xy+y2的取值范围. 解因为 x2+xy+y2=2①设x2—xy+y2=t ②①—②,得③①+③,得④由④知 t≤6,由变式,得解得 t≥2/3,所以例2 已知a、b、C满足a+b+c=0,abc=8,  相似文献   

6.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

7.
联想是以观察为基础,对研究的对象或问题,联想已有的知识和经验进行形象思维的方法.通过联想,构造相应的条件,从而解决问题.【例】 设x、y∈R+,且x+y=1,求证:(x+2)2+(y+2)2≥252.联想一:巧用“a2+b2≥2ab”法1:直接法由x+y=1,得(x+2)2+(y+2)2=x2+y2+4x+4y+8=(x+y)2+4(x+y)+8-2xy=13-2xy又∵x、y∈R+,由均值不等式,∴x+y≥2xy,即xy≤14,则-2xy≥-12.故(x+2)2+(y+2)2=13-2xy≥13-12=252.证毕.法2:间接法令a=x+2,b=y+2,则a+b=(x+2)+(y+2)=x+y+4=5(定值)∵a2+b2≥2ab,两边同时加上a2+b2得a2+b2≥(a+b)22即(x+2)2+(y+2)2≥[(x+2)+(y+2)]22=252.…  相似文献   

8.
新教材“不等式”一章中 ,把两项的重要不等式 a2+ b2 ≥ 2 ab ( a,b∈ R)和 a + b2 ≥ 2 ab ( a,b是正数 ) ,独立地列为一节“6 .2算术平均数与几何平均数”,删去了旧教材中三项的重要不等式 ,这说明了新教材更突出了基本知识和基本的转化思想 ,其它我们仅从这个最基本的不等式出发就可以做出精彩的文章 ,甚至解一些高难度的问题 .一、拆项例 1  (第 9届“希望杯”高二培训题 )已知 x,y,z是正数 ,求函数 u( x,y,z) =xy + yzx2 + y2 + z2 的最大值 .解 :u( x,y,z) =xy + yzx2 + y2 + z2= xy + yz( x2 + y22 ) + ( y22 + z2 )≤ xy + yz2 x…  相似文献   

9.
利用一元二次方程根的分布的充要条件 ,可以证明以下一类不等式 .例 1 设 x>0 ,y>0 ,且 x3 - x2 - 2 xy-y2 y3 =0 ,求证 :10 ,t>0 ,t2 - 4× t2 - t3>0 ,即 115 ,b>15 ,ab=22 5 ,求证 :a b<35 .证明 设 a b=t,ab=22 5 ,∴ a,b为一元二次方程 f (x) =x2 - tx 22 5 =0的两个根 .由于 a>15 ,b>15 ,f (15 ) >0 t<35 ,…  相似文献   

10.
李风琦 《湖南教育》2003,(16):53-53
学生做数学题应重“质”,而非重“量”。教师可根据教材内容,学生的学习层次,由易到难,精选不同的题目,编成题组。学生在做这些题组时,知识循序渐进,达到了事半功倍的学习效果。一、巩固性题组(为重现、熟悉基本知识、方法而设置)1.当x>0时,求证x+≥8;2.求函数y=3x2+的最小值;3.已知x>0,求证2-3x-的最大值为2-43√;4.已知0<θ<,求证:tanθ+cotθ的最小值是2;16xπ24x12x25.求证lgx+logx10≥2(x>1);6.已知x,y,z∈R+,求证++≥3。二、发展型题组(为提高应用知识、方法的能力而设置)1.已知a,b,c∈R+,求证:(1)(a+b)(b+c)(c+a)≥8abc;(2)a+b+c≥a…  相似文献   

11.
A卷一、选择题1.下列各对数中是方程2x+3y=12的解的有().x=3,y=2;x=1,y=2;x=-3,y=-2;x=0,y=4.(A)1个(B)2个(C)3个(D)4个2.二元一次方程组xy+=22xy=10,的解是().(A)xy==43,(B)xy==36,(C)xy==24,(D)xy==42,3.在方程4x+3y=8中,如果6y=8,那么x的值为().(A)1(B)2(C)3(D)44.一组数据:18.8,17.8,17.8,18.2,18.5,18,18.2的中位数为a,平均数为b,则().(A)a>b(B)a=b(C)a相似文献   

12.
代换法在数学解题中有着广泛的应用 ,用它证明不等式 ,不蹈常规 ,见解独到且富有新意 .本文谈谈五种代换方法在不等式证明中的运用 .1 增量代换在题设条件a≥b下 ,令a =b +t(t≥ 0 ) ,这种代换叫做增量代换 .例 1 已知x >y>0 ,求证 x -yy >0入手 ,用增量代换法去证明 ,十分快捷 .证明 :由x >y >0 ,可令x =y +t(t>0 ) .∵ y +t相似文献   

13.
问题不等式21≤ax2x+23+x1+b≤121对一切x∈R恒成立,求a、b的值.这是许多数学资料都选为范例或典型练习的一道题,主要解法如下:设y=f(x)=ax2+3x+bx2+1,则21≤y≤121,即函数y=f(x)的值域是[21,121].将y=f(x)变形整理得:(y-a)x2-3x+(y-b)=0,由于原不等式对任意x∈R恒成立,则这个关于x的方程必有实根,Δ≥0,即9-4(y-a)(y-b)≥0,亦即4y2-4(a+b)y+(4ab-9)≤0(※),这个不等式的解为:12≤y≤121,则y1=21,y2=121是方程(※)的两个根,则由韦达定理,得a+b=64ab-94=141ba==15,或ba==15.,这个解法是错误的,举一个反例:取a=b=3,则y=f(x)=3x2x+23+x1+3=3+3…  相似文献   

14.
方差用于衡量一个样本数据波动的大小,计公式为:S~2=1/n[(x_1-(?))~2 (x_2-(?))~2 … (x_n-(?))~2]=1/n[x_1~2 x_2~2 … x_n~2-1/n(x_1 x_2 … x_n)~2]。显然S~2≥0,仅当S~2=0时,x_1=x_2=…=x_n。例1已知实数x,y满足求xy的最大值。解视x,y为一组数据,其方差为S~2=1/2[x~2 y~2-1/2(x y)~2]=-1/4a~2 1/2a 3/4≥0。即(a 1)(a-3)≤0,所以或解得-1≤a≤3.所以xy=(x y)~2-(x~2 y~2)/2=5/2(a-2/5)~2-9/10。当a=3时,xy有最大值,为16。例2已知a,b,c三数满足方程组  相似文献   

15.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

16.
给出条件的代数式求值问题是中考中的常见题型.解决这种问题的方法多姿多彩,“整体方法”是其中一道亮丽的风景.例1若xy=a,1x2+1y2=b(b>0),则(x+y)2的值为().A.b(ab-2)B.b(ab+2)C.a(ab-2)D.a(ab+2)分析先将条件式变形,再整体代入求值式求值.解b=1x2+1y2=x2+y2x2y2=(x+y)2-2xyx2y2=(x+y)2-2aa2,故(x+y)2=a2b+2a=a(ab+2).选D.例2已知a+b=-8,ab=6化简bba姨+aab姨=________.分析先将求值式变形,再把条件式整体代入求值,在变形过程要注意a<0,b<0.解原式=-baab姨-abab姨=-ab姨a2+b2ab=-ab姨(a+b)2-2abab=-6姨64-126=-2636姨.填-2636姨.例3已知x=…  相似文献   

17.
对于任意两个实数x和y,总有:x=x+y2+x-y2,y=x+y2-x-y2.若令a=x+y2,b=x-y2.则有x=a+b,y=a-b.这种代换称之为和差代换.下面谈谈这种代换在求值中的应用.一、求分式值例1已知a2+b2=6ab且a>b>0,则a+ba-b=.(2001年北京市初二数学竞赛复赛题)解设a=x+y,b=x-y,同时代入a2+b2=6ab中,得(x+y)2+(x-y)2=6(x+y)(x-y),化简整理,得x2=2y2,而a>b>0,所以x>y>0,故x2y2=2,xy=2.又知a+b=2x,a-b=2y,∴a+ba-b=2x2y=xy=2.二、求根式值例2计算14+65-14-65的值是()(A)1(B)5(C)25(D)5(2000年全国数学联赛题)解设14+65=a+b,①14-65=a-b.②①×②,得a2-b2=4.③①2+②2…  相似文献   

18.
一、利用对称式求解例 1 .已知 :a=15- 2 ,b=15 2 ,求a2 b2 7的值。解 :由题设可得 a b=2 5,ab=1。∴原式 =( a b) 2 - 2 ab 7=( 2 5) 2 - 2 7=2 5=5。二、定义法求解例 2 .已知 y=x- 8 8- x 1 8,求代数式 x yx - y- 2 xyx y - y x的值。解 :依据二次根式的定义 ,知 x- 8≥ 0 ,且 8- x≥ 0 ,∴ x=8,从而 y=1 8。∴原式 =x yx - y- 2 ( xy) 2xy( x - y )=( x - y ) 2x - y =x - y=8- 1 8=- 2 。三、用非负数性质求解例 3.如果 a b | c- 1 - 1 | =4a- 2 2 b 1 - 4,那么 a 2 b- 3c=。解 :将原条件式配方 ,得 ( a- 2 - 2 ) …  相似文献   

19.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

20.
一、作差比较法例1求证:2+sin2x≥2(sinx+cosx).证明∵左边-右边=2(1-sinx)-2cosx(1-sinx)=2(1-sinx)(1-cosx)≥0,∴原不等式成立.二、判别式法例2已知函数:y=sec2x-tanxsec2x+tanx,求证:13≤y≤3.证明∵y=sec2x-tanxsec2x+tanx=1+tan2x-tanx1+tan2x+tanx,∴(y-1)tan2x+(y+1)tanx+(y-1)=0.当y=1时,tanx=0;当y≠1时,tanxR.∴Δ=(y+1)2-4(y-1)2≥0,∴13≤y≤3.三、分析综合法例3已知01.证明∵cosx>0,cosy>0,要证原不等式成立,只须证cos2x+y2>cosxcosy,只须证1+cos(x+y)2>cosxcosy,只须证1+cos(x+y)-2cosxco…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号