首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有关高线的一个不等式   总被引:1,自引:0,他引:1  
在文献 [1]中 ,有下面一个关于三角形高线的不等式 :ha+rha- r+hb+rhb- r+hc+rhc- r≥ 6 . (Cosnita-Turtoiu) (1)其中 ha,hb,hc 和 r分别为△ ABC相应边上的高线和内切圆半径 .本文试图给出 (1)式左端的一个上界 ,即证明H =ha+rha- r+hb+rhb- r+hc+rhc- r<7. (2 )由 ha =2 Sa,r =2 Sa+b+c(这里 S是△ ABC的面积 ) ,可得 har=a+b+ca ,代入 (2 )可以求得H=har+1har- 1+hbr+1hbr- 1+hcr+1hcr- 1=3+2 (ab+c+ba+c+ca+b) . (3)为了确定起见 ,不妨可设 a≥ b≥ c,且进一步设 a=xc,b=yc,再由 b+c>a,可得 1≤y≤ x<1+y.将 a,b代入 (3)化简后得…  相似文献   

2.
△ABC的内切圆、外接圆半径分别为r,R,大家知道有著名的Euler公式:R≥2r. 上述公式证明方法有多种,本文将给出△ABC中内切圆代换下的证明. 为此,我们先给出有关内切圆的一些基本知识点,这些在不等式证明中时是极其有用的. 如图1,设a=x+y,b=y+z,c =z + x,△ABC的内切圆、外接圆半径分别为r,R,面积为S,半周长p=a+b+c/2=x+y+z,由海伦公式知S=√p(p-a)(p-b)(p-c) =√xyz(x+y+z),注意到S=pr=a+b+c/2 r,故r=S/P=√xyz/x+y+z,而S=1/2absinC=abc/4R,故R=abc/4S=(x+y)(y+z)(z+x)/4√xyz(x+y+z),故=R/2r=(x+y)(y+z)(z+x)/8xyz≥8xyz/8xyz=1,故R≥2r.  相似文献   

3.
设△ ABC的三边长为 a、b、c,相应边上的高为 ha、hb、hc,其外接圆和内切圆半径分别为 R和 r,半周长为 p,面积为△ .1 987年 ,D.M.Milosevic证明了 :∑ ahb+ hc≥ 93 R2 (4 R + r) (1 )1 999年 ,姜卫东等给出了 (1 )的一个加强 :∑ ahb+ hc≥ 9R2 p (2 )以上“∑”表示循环和 ,下同 .本文讨论左端的上界 ,得到了下面的定理 在△ ABC中 ,有∑ ahb+ hc≤ p3 r (3 )其中等号成立当且仅当△ ABC是正三角形 .证明 :不妨设 a≥ b≥ c (4 )则 hb-hc=2△b -2△c =2△ (c-b)bc ≤ 0即 hb≤ hc,同理 ha ≤ hb.所以 ha ≤ hb≤ hc从而 1hb+ hc…  相似文献   

4.
观察下面三个问题 :( 1 )设a、b、c为△ABC的三边 .求证 :a2 b(a -b) +b2 c(b -c) +c2 a(c-a)≥ 0 .①(第 2 4届IMO)( 2 )若x、y、z∈R+,则x·x +yx +z+y·y +zy +x+z·z+xz+y≥x +y +z.②( 1 992 ,国际“友谊杯”数学邀请赛 )( 3)设x、y、z∈R+,求证 :x2 ·y +zy +x+y2 ·z+xz+y+z2 ·x +yx +z≥xy +yz+zx .③这三个不等式均不难证明 ,此处从略 .今将揭示他们之间隐含的内在联系 .1 .建立对应关系 ,揭示①可转化为②众所周知 ,对于任意△ABC的三边a、b、c,总可找到这样的正数x、y、z,使得a =y +z,b =z+x ,c =x +y .于是 ,式①化为(y+z…  相似文献   

5.
文[1]收录了由D.M.Milosevic在1987年提出并证明的一个不等式: 设△ABC的三边长为a、b、c,相应边上的高为ha、hb、hc,外接圆半径、内切圆半径分别为R、r.则  相似文献   

6.
文[1]提出了100个待解决的不等式猜想问题,其中第95题是:设锐角三角形的三边长、三傍切圆半径、内切圆半径和外接圆半径分别为 a、b、c、r_a、r_b、r_c、r、R.则 r_a/r_b r_b/r_c r_c/r_a≥1 R/r (1)本文将证明此猜想.证明:令 a=y z,b=z x,c=x y,则 x、y、z>0,  相似文献   

7.
一个不等式的初等证明   总被引:1,自引:0,他引:1  
文 [1]给出并用微分法证明了如下不等式 :已知 x,y,z∈ (0 ,+∞ ) ,且 x+ y+ z=1,则(1x- x) (1y- y) (1z- z)≥ (83 ) 3 . (1)受此启发 ,笔者经探索得出如下一个初等证明 .证明 由基本不等式易得xyz+ yzx≥ 2 y,yzx+ zxy≥ 2 z,zxy+ xyz≥2 x.将上述三个不等式相加得xyz+ yzx+ zxy≥ x+ y+ z=1. (2 )又由 1=x+ y+ z≥ 3 3 xyz,得 xyz≤12 7.∴ (1x- x) (1y- y) (1z- z) =1xyz· (1- x2 ) (1- y2 ) (1- z2 ) =1xyz[(1+ x) (1+ y)(1+ z) ][(1- x) (1- y) (1- z) ]=1xyz(2 +xy+ yz+ zx+ xyz) (xy+ yz+ zx- xyz) =2(1x+ 1y+ 1z) - 2 + (xy+ yz+…  相似文献   

8.
V.Ocordon曾给出了三角形的高与边长之间的不等式[1]:∑a2/h2b+h2c≥2 ① (关于△ABC三边及其边上的高的循环不等式,a、b、c为△ABC的三边,ha、hb、hc为对应边上的高,R、r分别为△ABC外接圆半径和内切圆半径)  相似文献   

9.
正人们知道,对于任意实数x,y,z,有如下不等式成立:(x+y+z)2≥2(xy+yz+zx).①若令x=ab,y=bc,z=ca,则如上不等式等价于:对于任意实数a,b,c,有不等式.(ab+bc+ca)2≥3abc(a+b+c)②这是一个十分简单的不等式,利用不等式②,却能够给出一些不等式竞赛试题简捷、明快的证法,本文提供一些例子,供读者探究和玩味.例1(2005年台湾竞赛题)设a,b,c是满足abc=1的正  相似文献   

10.
文[1]中收入三角形旁切圆半径(ra,rb,rc)和高(ha,hb,hc)间的三个不等式∑hahb≤∑rarb;∑ ha+hb/ra+rb;∑ ha+hb/ra=rb≤3;∏ hb+hc/ra+ha≤1.我们把它们“加强”为等式:  相似文献   

11.
本文约定△ABC各元素:三边长a、b、c,半周长p,面积S,高ha、hb、hc,外接圆半径R,内切圆半径r,旁切圆半径ra、rb、rc.  相似文献   

12.
也证一个猜想不等式   总被引:1,自引:0,他引:1  
文 [1]中提出如下一个猜想不等式 :设 x,y,z∈ R ,则有xx y yy z zz x≤ 322 .(1)文 [2 ]应用导数给出了 (1)式的一个证明 .其实利用现行高中课本《代数》下册 (必修 )第 15页上的一道习题 :(a2 b2 ) (c2 d2 )≥ (ac bd) 2 . (2 )(a,b,c,d∈ R)即可获得 (1)式的一个简洁的初等证明 .证明 由抽屉原则知 :xx y,yy z,zz x中至少有两个不小于 (或不大于 )12 ,由轮换对称性 ,不妨设它们是 xx y,yy z,则有(xx y- 12 ) (yy z- 12 )≥ 0 ,可化为12(xx y yy z)≤ xx y· yy z 12 .又由不等式 (2 ) ,可得(x y) (y z)≥ xy yz,∴ xy(x y) (y z) ≤ …  相似文献   

13.
猜想 1 设 ma,mb,mc,wa,wb,wc,ha,hb,hc,ra,rb,rc表示△ ABC的中线、内角平分线、高线及旁切圆的半径之长 ,则有 4R2 4Rr 3r2 ≥ ∑mawahara .这是文 [1]中提出的猜想 .构造 Rt△ ABC,a =BC=1,b=CA =1,c=AB=2 ,通过计算得 ma =mb=52 ,mc=22 ,wa=wb=4- 2 2 ,wc=22 ,ha=hb =1,hc=22 ,ra =rb =12 ,rc=12 - 2 ,R=22 ,r=2 - 22 ,则∑ mawahara =2 10 - 5 2 2 - 12 ,4R2 4Rr 3r2 =9- 2 22 ,不难验证2 10 - 5 2 2 - 12 >9- 2 22 ,即此时有∑ mawahara>4R2 4Rr 3r2 ,故猜想1不成立 .猜想 2 设 ha,hb,hc,ra,rb,rc 表示△ ABC…  相似文献   

14.
文 [1]得出H .Guggenheimer不等式rnahna+rnbhnb+rnchnc≥ 3 (n≥ 1) .①文 [2 ]将式①加强为rarbrchahbhc≥ 1.②本文将证明两个更强的结论 .命题 1 设△ABC的高和旁切圆 ,外接圆 ,内切圆半径分别为ha、hb、hc,ra、rb、rc,R ,r .在n≥ 1时 ,有rnahna+rnbhnb+rnchnc≥ 3 2R -r3rn.③引理[3 ]  设p为△ABC的半周长 ,则有∑ara=2p( 2R -r) .④其中“∑”表示循环和 .命题的证明 :由三角形中的恒等式aha=2pr等和式④ ,以及不等式 an+bn+cn3 ≥a +b +c3n 知rnahna+rnbhnb+rnchnc=∑rnahna=∑(ara) n(aha) n=∑(ara) n( 2pr) n ≥ 3( 2pr)…  相似文献   

15.
文 [1 ]中用微积分方法证明了不等式 :(x +y +z)·1y2 +yz+z2 +1z2 +zx +x2 +1x2 +xy +y2>4 + 23,①其中x、y、z为任意正实数 .我们指出 ,由此不等式可导出一个关于三角形的费尔马和的不等式 :设△ABC的三边长分别为a、b、c ,其费尔马点在形内 (即所有内角都小于 1 2 0°) ,且到顶点A、B、C的距离分别为x、y、z,则(x+y +z) 1a+ 1b+ 1c >4 + 23.②事实上 ,当△ABC的费尔马点在形内 ,即所有内角都小于 1 2 0°时 ,有a =y2 +yz+z2 ,b =z2 +zx +x2 ,c =x2 +xy +y2 .此时式①直接化为式② .关于费尔马和的一个不等式@方廷刚$四川省成都市第七…  相似文献   

16.
平均值不等式是高中数学的重要内容 ,熟练掌握二元和三元均值不等式及其变形应用 ,可以巧妙地解决许多数学题 .1 证明不等式这是最为大家常见问题 ,问题解决的关键是怎样根据题目提供的隐含条件去构造二元或三元均值不等式 .例 1 已知 x,y,z∈ R+且满足 xyz(x +y + z) =1 ,求证 :(x + y) (y + z)≥ 2 .证明 :(x + y) (y + z) =xy + xz + y2 + yz =y(x + y + z) + xz =y . 1xyz+ xz =1xz+ xz≥ 2 1xz. xz =2 .证毕 .此题从“2”这个数字 ,提示我们构造二元均值不等式 .2 求最值高中数学很多地方涉及求最值 ,利用均值不等式中等号成立的条…  相似文献   

17.
设△ABC的三边a,b,c对应的高为ha,hb,hc,对应的旁切圆半径为ra,rb,rc,则有R.R.Janic不等式[1]:≥.3ra rb rc①2hb hchc haha hb文[2]考虑了不等式①的加强形式:ra?rb?rc≥.1②hb hchc haha hb8本文将不等式②类比到三维空间的四面体,得到.定理设四面体A1A2A3A4体积为V,外接球半  相似文献   

18.
在文[1]里,笔者给出并证明了如下有趣的无理不等式: 问题 设a≥x>1,b≥y>1,c≥z>0,求证:(a+b+c)-(x +y+z)<√a2-x2+√b2-y2+√c2-z2≤√(a+b+c)2-(x+y+z)2.① 等号仅当a:x=b:y=c:z时成立. 下面给出不等式①的几个应用.  相似文献   

19.
一个不等式的下界估计   总被引:2,自引:0,他引:2  
文 [1]提出了如下猜想 :设 x,y,z∈R ,则xx y yy z zz x≤ 322 .1文 [2 ]中运用均值不等式和导数知识证明了 1式 .笔者将给出 1的左式的下界估计 :设 x,y,z∈R ,则xx y yy z zz x>1. 2证明 记 M=max{ x y,y z,z x} ,则有xx y yy z zz x>xM yM zM=(x y z ) 2M=(x y z) 2 (xy yz zx)M>x y zM >1.另证  xx y yy z zz x>xx y z yx y z zx y z=(x y z ) 2x y z=1 2 xy 2 yz 2 zxx y z >1.当 x→ 0 ,y→ 0时 ,2的左式→ 1.这说明常数 1是不等式 2的最佳下界一个不等式的下界估计@安振平$陕西省永寿县中学!7134001 刘保乾.试谈发现三…  相似文献   

20.
题目:设x+y+z=xyz,(x>0,y>0,z>0)求证:2(x2+y2+z2)-3(xy+yz+xz)+9≥0文[1]中用三角函数知识来证明,且证明繁琐,文[2]用换元的方法,然后利用第25届IMO试题的结论:若x≥0,y≥0,z≥0,且x+y+z=1,则xy+yz+xz-2xyz≤727来证明也是不简单,实际上利用拙文[3]中提出的证明不等式化齐次的策略可简单地给出证明.证明:因x+y+z=xyz,原不等式等价于2(x2+y2+z2)(x+y+z)-3(x+y+z)(xy+yz+xz)+9xyz≥02(x3+y3+z3)+2x(y2+z2)+2y(x2+z2)+2z(x2+y2)-3x(y2+z2)-3y(x2+z2)-3z(x2+y2)-9xyz+9xyz≥02(x3+y3+z3)-x(y2+z2)-y(x2+z2)-z(x2+y2)≥0(x+y)(x-y)2+(y+z)(y-z…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号