首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
题目方程 x~2+px+q=0的两根都是非零整数,且 p+a=198,则 p=____.(1992年上海市初中数学竞赛试题)解设 x~2+px+q=0的两个整数根为 x_1、x_2,且 x_1≠  相似文献   

2.
已知一元二次方程有整数根 ,求方程中参数的值 ,这类问题类型较多 ,解法不一 .本文介绍几种常见方法供参考 .1 求根法当一元二次方程的判别式Δ是完全平方式或完全平方数时 ,可利用因式分解法 ,先求出方程两根 ,再求参数 .例 1 已知关于 x的一元二次方程 a2 x2 - (3a2- 8a) x +2 a2 - 1 3a +1 5 =0有整数根 ,求整数 a的值 .分析 因为Δ =(3a2 - 8a2 ) - 4 a2 (2 a2 - 1 3a+1 5) =(a2 +2 a) 2是完全平方式 ,故可用因式分解法求出方程根 .解 解方程得 x1 =2 - 3a,x2 =1 - 5a.因为方程有整数根 ,所以 x1 或 x2 是整数 .因此 ,a是 3或 5的因…  相似文献   

3.
如果ax~2 bx c=0=(a≠0)的两个根是_x_1、x_2,那么x_1 x_2=-(b/a),x_1·x_2=c/a.这个定理是数学家韦达发现的.它揭示了一元二次方程的根与系数之间的关系.应用这个定理来求解的数学竞赛题在历年的初中数学竞赛中,频频出现.下面我们一起探讨几个问题。一、讨论方程的根的状况例1 当m是什么整数时,关于x的方程x~2-(m-1)x m 1=0的两根都是整数?  相似文献   

4.
初中数学探究型命题是指:①由条件探索相应的结论;②由给定的结论反索应具备的条件。例 1 已知方程ax~2+2bx+c=0的两根为x_1和x_2,则以x_1—1/x_2和x_2-1/x_1为根的一元二次方程有等根的条件是什么?(这是由结论反索条件) 例2 如果1/3x~(2b-1)y~6与2x~(2a+4)y~(3b-2a-2)是同类项,求a和b的值。(这是由条件探索结论) 初中数学探究型命题的解法,不仅仅是解题技巧问题,而且还涉及到重要的数学思想方法,诸如分析与综合、分类与讨论、计算与推理等等,其解题思路大致是:  相似文献   

5.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

6.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

7.
一元二次方程的根与系数之间存在着下列关系:如果ax~2+bx+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a.这就是有的参考书所讲的“韦达定理”.  相似文献   

8.
一、韦达定理的意义一元二次方程ax~2+bx+c=0的根x_1、x_2与系数a、b、c有如下关系:x_1+x_2=-b/a,x_1x_2=c/a. 这是法国数学家韦达于1559年首先给出的,因而称为“韦达定理”.特别地,对于方程x~2+px+q=0而言,它的两根x_1、x_2满足x_1+x_2=-p,且x_1x_2=q. 顺便提一下韦达定理的逆定理:  相似文献   

9.
高二第二試题目解法 1.証明:不論n是什么整数,方程 x~2-16nx 7~5=0 (1)没有整数解。这题目里面的7~5可以改成7~8,其中s是任何正的奇数。解题时,最好利用根与系数的关系,并用反证法。现在把解写在下面: 解:设两根为x_1,x_2,则有 x_1 x_2=16n (2) x_1x_2=7~8 (3)现在假定(1)有一根是整数,则由(2),另一根也是整数。因7是素数,故由(3)知,x_1x_2可以写成下面的形式: x_1=±7~k,x_2=±7~h (4)上面两式同时取 号或-号,而 k h=s. (5)把(4)代入(2)得 7~k 7~h=±16n (6)因k h=s为奇数,不妨设k>h,则  相似文献   

10.
(本讲适合初中) 对于一元二次方程ax~2 bx c=0(a≠0)的实数根的情况,可以用根的判别式△=b~2-4ac来判别,但对于它的有理数根、整数根的情况,就没有统一的方法来判别,只能对具体问题寻找具体解题方法,本文约定方程的两根为x_1、x_2(x_1≤x_2)。  相似文献   

11.
高中课外讲座.作者汤正谊、周士藩.关于一次不定方程a_1x_1+a_2x_2+…+a_mx==n(a_i,n皆为正整数)的整数解问题,目前已有的一般的理论和解法往往超出中学数学的范围.本文以一些特殊不定方程为例,介绍一些用初等方法讨论其正整数解或非负整数解组数问题的方法.这些方法涉及穷举法,图象法,空位选取法,数学归纳法.  相似文献   

12.
<正>许多组合问题看似与方程无关,若能去伪存真,转换思维角度,转化为不定方程整数解的模型,则往往能化繁为简、柳暗花明.1不定方程整数解的有关结论定理1不定方程x_1+x_2+…+x_k=n(k,n∈N+)的非负整数解的个数为C_(n+k-1)n.证法1将不定方程x_1+x_2+…+x_k=n的任意一组非负整数解(x_1,x_2,…,x_k)对应于一个由n个圆  相似文献   

13.
李彩兰 《初中生》2012,(18):21-23
正如果一元二次方程ax~2+bx+c=0(a≠0)的两个根为x_1,x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a这就是根与系数的关系,也称为韦达定理.下面以2011年中考试题为例,归纳它在中考解题中的几种典型应用,供你复习时参考.  相似文献   

14.
求一元二次方程的整数根是各类竞赛的常见题.由于这类问题将整数理论和一元二次方程的有关知识有机地结合在一起,解题的技巧和方法较灵活.现举例说明这类问题的解法.一、利用整数的奇偶性例1!若m、n是奇数,求证:方程x2+mx+n=0没有整数根.分析:只要证明x既不可能是奇数,也不可能是偶数就行了.证明:如果x是奇数,由于m、n也是奇数,则x2+mx+n必为奇数,它与x2+mx+n=0矛盾;如果x是偶数,由于m、n是奇数,故x2+mx+n必为奇数,它与x2+mx+n=0矛盾.因此,方程x2+mx+n=0没有整数根.二、利用判别式及辅助未知数的取值范围例2:!已知m是满足不等式1≤m≤50的正…  相似文献   

15.
初三代数教材对一元二次方程根与系数关系叙述为:如果ax~2+bsr+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a。此定理对结论成立的先决条件交代很清楚,即“原方程存在两个根x_1和x_2”。但在教学过程中,我发现有些学生在运用这一关系时却只记住了结果,忽视了条件,因粗心大意导致解题错误。 错例1.判断正误:方程ax~2+bx+c=(a≠0)两根之和为-b/a。( ) 错误判断为“对”。 错例2.若方程x~2+(m~2-1)x+1+m=0的两根互为相反数,则m的值为( ) (A)1或-1; (B)1; (C)-1; (D)0。 错选(A)。  相似文献   

16.
<正>一元二次方程的整数根问题在各类数学竞赛中一直倍受关注.它不仅涉及到方程的相关知识,而且还经常用到因式分解、整除和不定方程的解法等有关知识,具有较强的综合性和技巧性.下面以竞赛试题为例,谈谈求形如ax2+bx+c=0的整数根这类问题的四  相似文献   

17.
实系数一元二次方程ax~2+bx+c=0(a≠0)有性质: (1)若a+b+c=0,则方程的两根为x_1=1,x_2=c/a;反之,若一根为1,则a+b+c=0。  相似文献   

18.
题:已知二次方程x~2-2px+p-2=0一根在-1与1之间,另一根在1与2之间,试求p的值所在的区间。一部分学生的解法如下: △=4p~2-4(p-2)=4(p~2-p+2)。∵p~2-p+2中二次项系数为正,其判别式△′=1-8<0, ∴p~2-p+2恒正。因此原二次方程总有两个不等的实数根x_1、x_2。∵-1相似文献   

19.
不等式问题,是中学数学的一个重要课程。这类问题结构比较复杂,解法灵活多变,是教学中的一个难点。突破难点的途径是多方面的,用函数的观点来考察不等式问题,就是其中的一种有效方法。本文试从凸(凹)函数的性质入手,给出一类不等式的巧妙解法。一、凸(凹)函数的定义设f(x)是〔a,b〕上的一个连续函数,如果对于它的定义域中的任意不同两值x_1,x_2有不等式 f(((x_1 x_2)))/2>((f(x_1) f(x_2)))/2  相似文献   

20.
题目:当m取什么实数时,方程x~2 (m-2)x (m 3)=0两根平方和有最小值?最小值是多少?解法一:设此方程的两根为x_1、x_2,则x~2_1 x~2_2=(x_1 x_2)~2-2x_1x_2=〔-(m-2)〕~2-2(m 3)=m~2-6m-2∴当m=-(b/2a)即m=3时,x~2_1 x~2_2=m~2-6m-2 有最小值为:3~2-6×3-2=-11。解法二:设此方程的两根为x_1、x_2,则  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号