首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
笔者近日在竞赛教学中遇到如下赛题:问题(2012年全国高中数学联赛甘肃预赛试题)设a,b,c为正实数,且d+6+c=1,求证:(a~2+b~2+c~2)(a/b+c+b/a+c+c/a+b)≥1/2本文在此将先给出上述问题的简洁证明,然后探讨与著名不等式(Nesbitt不等式)相关的不等式链,现与读者共享11问题的简洁证明为方便,我们先介绍著名Nesbitt不等式:若  相似文献   

2.
本文举例介绍通过构造条件等式来证明不等式,这种方法只是给大家提供一种证明不等式的新视角,有时并不一定是最便捷的,不当之处请同行批评指正. 例1(2000年加拿大数学奥林匹克试题)设a,b,c ∈ R+,求证:a3/bc+b3/ac+c3/ab≥a+b+c.  相似文献   

3.
正Pham Kim Hung不等式:设a,b,c≥0,a+b+c=2,证明:a~2b~2+b~2c2+c~2a~2+abc≤1①.当且仅当a=b=1,c=0及其循环排列时等号成立.这是Pham Kim Hung在《不等式的秘密》(第一卷)中提到并证明的一个有趣的不等式,文[2]将该不等式加强为  相似文献   

4.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

5.
2005年罗马尼亚的一道数学竞赛题为:已知a、b、c为正实数.证明:a+b/c2+b+c/a2+c+a/b2≥2(1/a+1/b+1/c). 这是一道关于三个变元a、b、c对称的分式不等式,从这个不等式出发,将其引申拓广,可得两个有趣的无穷长的代数不等式链,即有以下两个命题中的不等式链成立.  相似文献   

6.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

7.
文[1]中作者给出并证明了Nesbitt不等式的加强式,同时介绍了其运用,本文给出Nesbitt不等式加强式的一个等价形式,在此基础上建立几个新颖的不等式.Nesbitt不等式设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32(1).文[1]将(1)式加强为:设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32+a-b 2+b-c 2+c-a 2 a+b+c 2(2).这里给出(2)的等价变形形式,在此基础上建立几个有趣的不等式.  相似文献   

8.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

9.
正Nesbitt不等式:若a,b,c∈R+,则a/(b+c)+b/(c+a)+c/(a+b)≥3/2.该不等式可参见高中课标课程人教版高中教材《不等式选讲》第49页习题第7题,它也曾经作为1963年俄罗斯数学竞赛试题出现,其证明方法有多种,但基本上都是变形复杂、计算量大,对学生来讲可操作性不高.梁开华在其文章《两道竞赛题的变化题》中给出了上述著名的不等式的两道如下变化题:  相似文献   

10.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

11.
1963年,一道经典的不等式题在莫斯科数学竞赛中应运而生,原题如下:设 a,b,c∈R+,求证:a/(b+c)+b/(c+a)+c/(a+b)≥3/2.①这个不等式的证法很多,下面笔者给出两个最简单的证明过程.证法1:要证原不等式成立,只须证 a/(b+c)+1+b/(c+a)+1+c/(a+b)+1≥9/2,即只须证[2(a+b+c)](1/(b+d)+1/(c+a)+1/(a+b))≥9,由柯西不等式易知上式显然成立,所以原不等式  相似文献   

12.
《数学通报》2010年第12期宋庆老师提供的第1885号数学问题如下:题目已知a,b,c为正数,求证:9a/b+c+16b/c+a+25c/a+b≥22.文献[1]、文献[2]和文献[3]对该不等式给出了证明和推广.本文给出了一种新的证明,并通过柯西不等式和判别式法给出不等式的几种推广.  相似文献   

13.
(2021奥地利数学奥林匹克不等式)已知a,b,c∈R+,a+b+c=1,求证:a/2a+1+b/3b+1+c/6c+1≤1/2(1).本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.1.不等式(1)的证法分析1:不等式(1)的左端每一项的结构相同,但遗憾的是分母的系数不等,注意到每一项的特点,因此可通过证明局部不等式,再叠加.  相似文献   

14.
题目 已知正实数a,b,c满足abc=1,证明:1/a5(b+2c)2+1/b5(c+2a)2+1/c2(a+2b≥1/3. 这是2010年美国国家队选拔考试第二题,刊在《中等数学》2012年第8期上,参考答案上通过构造两个和式,连续二次运用柯西不等式进行证明,显得有些繁琐,本题其实可以利用基本不等式得到简捷证明.  相似文献   

15.
<正> 本文给出一个条件不等式的10种证法,从中可以看出条件不等式证明的一些常用思想方法.同时给出几个常见结论及其推广.已知:a、b、c是正数且a+b+c=1,求证:a2+b2+c2≥1/3.思路1 这是一个对称不等式,取等号的条件应为a=b=c=  相似文献   

16.
在文[1]中,陆爱梅老师提出一组四个猜想不等式: 猜想1 已知a,b,c是满足abc=1的正数,证明:a2/a3+2+b2/b3+2+c2/c3+2≤1/3(a+b+c); 猜想2 已知a,b,c是满足a+b+c=1的正数,证明:a2/b+c2+b2/c+a2+c2/a+b2>3/4; 猜想3 已知a,b,c是满足a+b+c=3的非负实数,证明:a+b/a+1+b+c/b+1+c+a/c+1≥3; 猜想4 已知a,b,c是两两不同的实数,证明:(a-b/a-c)2+(b-c/b-a)2+(c-a/c-b)2≥a2+c2/a2+b2+b2+a2/b2+c2+c2+b2/c2+a2.  相似文献   

17.
高中课本上,有这样一个代数不等式: 设a,b,c∈R+,则 b+c/a+c+a/b+a+b/c≥b. (1) 利用二元或三元均值不等式,可方便地证明(1)式.本文将对(1)作适当变形,从而引出若干有趣结论,下面以命题形式加以简述.  相似文献   

18.
1978年,B.M.Milisavljevic建立关于三角形边长a、b、c与外接圆半径R、内切圆半径r的一个几何不等式[1]Rr≥31∑ba+c.(1)Milisavljevic不等式形式优美,且加强了著名的Euler不等式[2]R≥2r,引起了不少人的兴趣.1996年,宋庆先生撰文[2]指出,Milisavljevic不等式强于不等式Rr≥43∑b+ac;(2)该文中,作者建立了一个较(2)式强但与Milisavljevic不等式不分强弱的不等式Rr≥98???∑b+a c???2.(3)本文统一加强上述不等式,并给出一个逆向不等式.定理设a、b、c为△ABC的三边长,s、R、r分别为三角形的半周长、外接圆半径、内切圆半径,则29???∑s?a…  相似文献   

19.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

20.
高中《数学》(试验修订本·必修)第二册(上)第11页习题6.2第1题是:求证:(a2+b)2≤a22+b2.将上述不等式变形可得a2+b2≥(a+2b)2.(*)不等式(*)可利用均值不等式直接证明,也可借助恒等式2(a2+b2)=(a+b)2+(a-b)2及(a-b)2≥0证明.不等式(*)有着广泛的使用价值,本文略举数例加以说明.一、证明不等式【例1】设c是直角三角形的斜边,a、b是两条直角边,求证:a+b≤2c.证明:由题设得a2+b2=c2,由不等式(*)得c2=a2+b2≥(a+2b)2,即(a+b)2≤2c2,亦即a+b≤2c.【例2】己知a、b∈R+,且a+b=1,求证:a+21+b+21≤2.证明:由不等式(*)及已知有2=(a+21)+(b+21)≥(a+21…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号