首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
题 求证 椭圆 x22 5 +y29=1和双曲线 x21 5 -y2 =1在交点处的切线互相垂直。学生往往先求出椭圆与双曲线的交点坐标 ,然后再分别求出椭圆、双曲线在交点处的切线方程 ,进而由两切线斜率的乘积为 -1 ,得到切线互相垂直的结论。思路自然 ,但解题过程却比较繁琐。其实本题有如下简捷的解法。证明 设两曲线交点为 (x0 ,y0 ) ,则过交点的两曲线的切线方程为 :l1:9x0 x +2 5 y0 y =2 2 5 ,l2 :x0 x -1 5 y0 y =1 5 ,∴k1=-9x02 5 y0,k2 =x01 5 y0,k1k2 =-9x202 5× 1 5 y20①∵交点 (x0 ,y0 )在两曲线上 ,所以9x20 +2 5 y20 =2 2 5 ,x20 -1 5 y…  相似文献   

2.
处理直线与椭圆相交问题,采用设出交点坐标,但不求出,利用韦达定理和相关坐标去把问题转化,可巧妙解题下面用一例说明.例已知点P(4,2)是直线l被椭圆x236+y92=1所截得的线段的中点,求直线l的方程.分析本题考查直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立消去y(或x),得到关于x(或y)的一元二次方程,再由根与系数之间的关系,直接求出x1+x2,x1x2(或y1+y2、y1y2)的值代入计算即得,并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法在圆锥曲线中要经常用到.本题涉及到直线被椭圆截得弦的中点问题,也可采用点差法或中点坐标公…  相似文献   

3.
我们知道:过两曲线c_1:f(x,y)=0;c_2:g(x,y)=0的交点(如果存在的话)的曲线系方程为:f(x,y)+λ-g(x,y)=0(λ为参数)。在进行高三数学综合复习时,使学生能够熟练地使用曲线系方程来解决问题,对培养解题的能力是大有好处的。下面举例说明在教学大纲的范围内的一些应用。例1:已知两条相交曲线:x~2/16-y~2/9=1和x~2/25+y~2/9=1,试证:(1) 这两条曲线的交点在椭圆2x~2/41+y~2/41=1上;(2) 有无穷多条双曲线过这两曲线的交点。此题若按一般解法,求交点,再代入椭圆方程检  相似文献   

4.
1 抓定点,用定义 例1 设双曲线与椭圆x2/27+y2/36=1有共同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求双曲线的方程。  相似文献   

5.
文[1]给出了与椭圆、双曲线有关的常考题目的二个实用结论及其证明:结论1设椭圆(双曲线)C的焦点在x轴上,直线l是过焦点的一条直线,A、B是直线l与椭圆(双曲线)C的两个交点,且满足AF=λFB,那么直线l的斜率的平方为k_l~2=((λ+1)/(λ-1))~2e~2-1.  相似文献   

6.
现高中教材《平面解析几何》(甲种本)第116页例3求证:椭圆x~2/25+y~2/9=1和双曲线x~2-15y~2=15在交点的切线互相垂直。书上证明方法是求四个交点坐标,再求交点处切线的斜率,验证两者成负倒数关系。实际上,本题可作一般性证明,即不必求出交点坐标。证明如下。设椭圆与双曲线的交点坐标为(x_0,y_0),则过(x_0,y_0)椭圆的切线为 x_0x/25+y_0y/9=1,即 9x_0x+25y_0y=225;双曲线的切线为x_0x-15y_0y=15,两切线的斜率分别为:  相似文献   

7.
有心圆锥曲线的一个有趣现象   总被引:1,自引:0,他引:1  
问题1 设MN是垂直于椭圆x2/a2+y2/b2=1(a>b>0)长轴的一条动弦,A1A2是椭圆的长轴,则动直线MA1与NA2的交点轨迹是双曲线x2/a2-y2/b2=1.  相似文献   

8.
在求圆锥曲线轨迹方程时用定义解题既方便又快捷 ,但有时审题不清 ,思考不严密 ,造成解题错误 .现举例说明以便引起重视 .例 1 动点 P到直线 x =5的距离与它到点 F ( 1,0 )的距离之比为 3 ,求动点的轨迹方程 .错解 :由定义知 ,点 P的轨迹是椭圆 ,所以 e=33 ,c=1,a2c=5 ,所以 a2 =5 .所以 b2 =a2 -c2 =4.故所求方程为 x25 +y24=1.正解 :设 P( x,y) ,由题意得|5 -x|( x -1) 2 +y2 =3化简得 ( x +1) 212 +y28=1.例 2 已知双曲线的右准线 x =4,右焦点F ( 10 ,0 ) ,离心率 e =2 ,求双曲线方程 .错解 1:因为右准线方程为 x =4,所以 a2c=4,又 c…  相似文献   

9.
解题教学,是提高思维能力的重要环节.那么如何进行解题教学,才能提高思维能力呢?我在多年的教学实践中深深体会到,解题教学中注重发挥学生主体作用,是开发智力培养能力的重要举措.下面谈谈我的一些具体做法和体会.1给学生创造思维活动的机会解答数学问题的关键是思路.在解题教学中不要直接告诉学生思路,而是为学生提供思维活动的平台,引导学生在探究思路的过程中学会思考,让学生既知其然,又知其所以然,从而有效地提高独立分析问题,解决问题的能力.问题1已知椭圆x25+y24=1和直线l∶y=2x+t,问t在什么范围内变化时,椭圆上总有两点关于直线l对称?教学时,不要直接告诉学生解题过程,而是设置如下问题让学生思考:(1)求t的范围一般方法是什么?(解关于t的不等式)(2)根据什么特征来建立关于t的不等式?(具体方法),学生掌握了思维原则,就能从不同的角度探究解题方法.方法1利用判别式设M1(x1,y1),M2(x2,y2)是椭圆上关于直线l对称的两点.直线M1M2与l垂直,可设直线M1M2的方程为y=-x2+m,即x=-2y+2m,代入椭圆方程得21y2-32my+16m2-20=0,则关于y的二次方程有两个不等实根,其充要条件...  相似文献   

10.
在解题过程中为了促进求解,常常要引进辅助未知数。引进辅助未知数的方式多种多样,但是宗旨只有一个——达到解题的目的,在很多场合,辅助未知数本身倒不必求出。因此我们要教会学生使用辅助未知数分析、解决问题,以沟通未知和已知的联系。例1.求经过两曲线 x~2+y~2+3x-y=0和3x~2+3y~2+2x=y=0交点的直线方程。解:设两曲线的任一交点坐标为(x_0,y_0),  相似文献   

11.
课时一 椭圆的标准方程及几何性质 基础篇 诊断练习一、填空题1.椭圆 4 x2 + 2 y2 =1的焦点坐标为 ,准线方程为 ,离心率为 .2 .椭圆 x29+ y24 =1上任意一点 P到两焦点 F1,F2 的距离之和为 ,三角形 F1PF2 的周长为.3.椭圆 x22 5+ y216 =1上一点 P到右焦点 F的距离是长轴两端点到右焦点 F的距离的等差中项 ,则点 P的坐标为 .4 .椭圆 x24 + y23=1与两对称轴的交点分别为 A ,B,C,D ,则四边形 ABCD的内切圆的面积为 .二、选择题1.设焦距为 2 c =6 ,焦点在 x轴上的椭圆经过点Q( 0 ,- 4) ,则该椭圆的标准方程为 (   )( A) x210 0 + y23…  相似文献   

12.
<正>在解析几何中,我们常常利用曲线束解题,如过两相交直线交点的直线束,过两圆相交的交点的圆束,等等,其最大的作用是简化运算.下面谈谈二次曲线束在解几方面的应用.一、知识梳理二次曲线方程ax2+bxy+cy2+bxy+cy2+dx+ey+f=0,根据参数的不同值,可表示成椭圆、双曲线、抛物线等二次曲线.其实除了上述曲线之外,还可表示成两条直线.形如(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)=0的方程也为二元二次方程,可看成退化的二次曲线.  相似文献   

13.
题已知椭圆的方程为x2/4 y2/2=1,点A 的坐标(1,1). (1)A为直线l与椭圆两交点的中点,求l 的方程; (2)求过点A的直线与椭圆的两交点的中点的轨迹方程.解 (1)设l与椭圆的交点分别为 (x1,y1),(x2,y2)(x1≠x2), 代入椭圆方程得  相似文献   

14.
题目已知椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)的离心率为(21/2)/2,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(21/2+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1和PF2的斜率分别为k1、k2.证明:k1k2=1;  相似文献   

15.
冯涛 《中学教研》2014,(6):37-39
正题目如图1,已知椭圆C1:x2a2+y2b2=1(ab0)和圆C2:x2+y2=b2,圆C2将椭圆C1的长轴三等分,且圆C2的面积为π.椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M.(1)求椭圆C1的标准方程.(2)①设PM的斜率为kPM,直线l的斜率为t,求kPM t的值;②求△EPM面积最大时直线l的方程.(2014年宁波市高三十校联考数学模拟试题  相似文献   

16.
一、将平面向量融入解析几何【例1】(2004年山东卷)设双曲线C:x2a2-y2=1(a>0)与直线l∶x y=1相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围;(II)设直线l与y轴的交点为P,且P A=512P B,求a的值.分析:本小题主要考查直线、双曲线的概念和性质,平面向量的运算等知识.解题时先将直线方程代入曲线方程中,整理一下,变成一个关于x的一元二次方程,再使用韦达定理,写出两根之和与之积,最后再根据题目的要求求解.解:(I)由C与l相交于两个不同的点,故知方程组x2y2-y2=1x y=1有两个不同的实数解.消去y并整理得(1-a2)x2 2a2x-2a2=0.①所以…  相似文献   

17.
题目 (2014年湖北理数第9题)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π/3,则椭圆和双曲线的离心率的倒数之和的最大值为() A.4√3/3 B.2√3/3 C.3 D.2 解析:不妨设椭圆和双曲线的方程分别为x2/a212+t2/b12=1和x2/a22-y2/b22=1,其中:a1>b1>0,a2 >0,b2 >0,且椭圆和双曲线的离心率分别为e1和e2.记|PF1 |=m,| PF2 |=n,则由椭圆和双曲线的定义知:|m+n|=2a1①,| m-n |=2a2②.由①②得:m2+n2=2a2+ 2a2,mn=a12-a22③.在△F1 PF2中,应用余弦定理得:cos∠ F1PF2=m2+n2-(2c)2/2mn =1/2,即m2+ n2-4c2=mn.  相似文献   

18.
解析法是16世纪数学最重要的成果之一,它是数形结合的桥梁.具体地说就是借助于坐标系,用坐标表示点,把曲线看成是满足某种条件的集合或轨迹,用曲线上点的坐标所满足的方程表示曲线,通过研究方程的性质间接地来研究曲线的性质.也就是用代数方法处理几何问题,用几何直观研究代数问题的一种方法.本文就其在中学数学中的应用进行探究.1轨迹方程的求解例1已知椭圆2214x+y=和直线y=2x+m恒有两个不同的交点,求两交点连线的中点轨迹方程.解设直线与椭圆的两个交点的坐标为M(x1,y1);N(x2,y2),则有221x1+y4=1,(1)222x2+y4=1.(2)(2)?(1)得:(x22?x12)+y…  相似文献   

19.
我们首先看解析几何中的一个经典问题.例1直线l:x=my+1与椭圆C:x~2/4+y~2=1相交于P、Q两点,设A(-2,0),求三角形APQ面积的最大值.解:如图1,设直线l:x=my+1与x轴交点为R(1,0),直线l与椭圆C的  相似文献   

20.
<正>解答平面解析几何题往往运算量较大,而有时用平面几何知识却能减少运算量.下面举例说明这一解题方法.例1 设直线l_1:a_1(x+1)+b_1y=0,l_2:a_2(x-1)+b_2y=0,满足a_1a_2+b_1b_2=0,求l_1与l_2交点P的轨迹方程.分析本题中有四个参数,若直接求出交点P的坐标,再消去参数得出所求轨迹方程,技巧强,运算量大.而充分挖掘题目的隐含条件,运用平面几何知识,可获得简解.解由条件可知,直线l_1、l_2分别过定点A(  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号