首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(2 2 )设 a0 为常数 ,且 an =3n-1 -2 an-1 (n∈ N* ) .( )证明对任意 n≥ 1,an =15 [3n +(- 1) n-1 .2 n]+(- 1) n .2 na0 .( )假设对任意 n≥ 1,有 an >an-1 ,求a0 取值范围 .证法 1  ( )由已知 an =3n-1 -2 an-1 3.an3n =1- 2 .an-1 3n-1 .令 bn=an3n,则 3bn= 1- 2 bn-1 3(bn - 15 ) =- 2 (bn-1 -15 ) 数列 { bn- 15 }是以 b0 - 15 为首项 ,公比为 - 23的等比数列 ,且 b0 - 15 =a0 - 15于是 bn - 15 =(- 23) n(a0 - 15 ) ,又 bn =an3n,∴ an3n =(- 23) n(a0 - 15 ) +15 an =15 [3n +(- 1) n-1 .2 n]+(- 1) n .2 na.( )由 n≥ 1,an …  相似文献   

2.
题目 已知数列{an}、{bn}中,an=an-1cosθ-bn-1sinθ,bn=an-1sinθ+bn-1cosθ,(n∈N^*,n〉1),其中a1=1,b1=tanθ,θ是常数,求数列{an}、{bn}的通项公式。  相似文献   

3.
1.分组某此既非等差,又非等比的数列,可拆开为等差数列、等比数列或常见的数列,分别求和. 例1 数列{an}的前n项和Sn=2an-1,数列{bn}满足b1=3,bn+1=an+bn(n∈N*). (1)证明数列{an}为等比数列; (2)求数列{bn}的前n项和Tn. 解(1)由Sn=2an-1,n∈N*,所以  相似文献   

4.
掌握判定等比数列的方法 ,目的是深刻理解等比数列的基本概念 ,熟练应用有关知识 ,为解等比数列综合题奠定良好的基础 .具体判定方法如下 :一、定义法 (又叫递推公式法 )如果一个数列 {an}满足an+ 1 an=q(常数 ) ,则这个数列叫做等比数列 .由此定义可判定等比数列 .例 1 已知数列 {an}中a1 =1,Sn + 1 =4an+ 2 (n∈N ) ,bn=an+ 1 -2an,求证 :数列{bn}是等比数列 .证明 ∵a1 =1,Sn+ 1 =4an+ 2 ,∴ a2 =S2 -S1 =S2 -a1=(4a1 + 2 ) -a1 =5 .又∵bn =an+ 1 -2an,∴ b1 =a2 -2a1 =5 -2 =3 .∵an+ 1 =Sn+ 1 -Sn=(4an+ 2 ) -(4an- 1 + 2 )=4…  相似文献   

5.
形如an=f(n)×qn(其中f(n)是关于n的多项式)的数列可用错位相减法求和,但f(n)的次数较高时用错位相减法比较麻烦.下面就来探讨拆项在相关数列问题中的应用. 一、拆项在数列求和中的应用 1.可行性分析 如果能找到一个数列{bn},使得an =bn+1-bn,那么数列{an}的前n项和Sn=a1 +a2+…+an=(b2-b1)+(b3-b2)+…+(bn+1-b1)一般地,当an=bn+k-bn或an=bn-bn+k(其中n∈N+,k∈N+,且k为常数)时,都可快速求和.  相似文献   

6.
在数学竞赛中 ,利用数列递推关系求通项 ,往往需要引参利用待定系数法去求 ;重要不等式的运用中取相等条件 ,往往通过引参来调配 ,要文从这两个方面 ,特举两例介绍一下通过引参来探索解题思路的方法 .例 1 设数列 {an}和 {bn}满足 a0 =1 ,b0=0且an+1 =7an+ 6 bn- 3,  1bn+1 =8an+ 7bn- 4,  2 n=0 ,1 ,2 ,…证明  an( n=0 ,1 ,2 ,… )是完全平方数 .( 2 0 0 0年全国高中数学联赛题 )分析 本题通过引参探求构造新的等比数列 ,从而求出 an 的通项 ,再证 an 是完全平方数 .解 设 an+1 + αbn+1 + β=( 7+ 8α) an+ ( 6+ 7α) bn+ β- 3- 4…  相似文献   

7.
(2012年高考江苏卷第20题)已知各项均为正数的两个数列{an}和{bn}满足:an+1=an+bn/a2n+b2n,n∈N*.(1)设bn+1=1+bn/an,n∈N*,求证数列{(bn/an)2}是等差数列;(2)设bn+1=2·bn/an,n∈N*,且{an}是等比数  相似文献   

8.
求通项四法     
题目 数列{an}满足a1=4,an+1an+6an+1-4an-8=0,记bn=6/an-2,n∈N+,求数列{bn}的通项公式。  相似文献   

9.
<正>数列求和是数列的重要内容之一,是高考必考内容.除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面就谈谈这类问题的解决方法和技巧.一、分组求和法如果数列的通项公式可分为几个等差、等比或常见的数列,这时就要分别求和,然后再相加.譬如数列{cn=an+bn},其中数列{an}、{bn}分别是等差、对比数列,前n项和Sn=(a1+b1)+(a1+b2)+…+(an+bn)=(a1+a2+…+an)+(b1+b2+…+bn).例1推测数列112,214,318,4116,…的前n项和Sn.解Sn=112+214+318+…+n+12()n=(1+2+3+…+n)+  相似文献   

10.
<正>数列求和是数列的重要内容之一,是高考必考内容.除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面就谈谈这类问题的解决方法和技巧.一、分组求和法如果数列的通项公式可分为几个等差、等比或常见的数列,这时就要分别求和,然后再相加.譬如数列{cn=an+bn},其中数列{an}、{bn}分别是等差、对比数列,前n项和Sn=(a1+b1)+(a1+b2)+…+(an+bn)=(a1+a2+…+an)+(b1+b2+…+bn).例1推测数列112,214,318,4116,…的前n项和Sn.解Sn=112+214+318+…+n+12()n=(1+2+3+…+n)+  相似文献   

11.
本文给出一类由分式递推公式所确定数列的通项公式的求解方法 .问题 1 已知数列 { an}中 ,a1 =α,an+ 1 =λan+β,α>0 ,λ>0 ,β>0 ,求数列 { an}的一个通项公式 .解 由题设条件知 an>0 (n∈ N*) ,根据递推公式 an+ 1 =λan+β,得 an(an+ 1 -β) -λ=0 .令 bn=an+-β+β2 +4λ2 ,代入上式得 (bn+β-β2 +4λ2 ) (bn+ 1 - β+β2 +4λ2 ) -λ=0 ,即 (β-β2 +4λ) bn+ 1 - (β+β2 +4λ) bn+2 bnbn+ 1 =0 .令γ=β2 +4λ,由 an>0 (n∈ N*) ,-β+β2 +4λ>0知 bn>0 (n∈ N*) ,将上面等式两边同时除以bnbn+ 1 ,得 β-γbn- β+γbn+ 1+2 =…  相似文献   

12.
题库(十一)     
1.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.(1)求数列{an}与{bn}的通项公式;(2)求数列{cn}对任意正整数n均有c1/b1+c2/mb2+c3/m2b3+…+cn/mn-1bn=(n+1)·an+1成立,其中m为不等于零的常数,求数列{cn}的前n项和Sn.2.已知常数a>0,向量m=(0,a),n=(1,0),经过定点A(0,-a)以m+λn为方向向量的直线与经过定点B(0,a)以n+2λm为方向向量的直线相交于点P,其中λ∈R.  相似文献   

13.
给出数列{an}的递推公式和首项a1,求数列{an}的通项公式,往往我们可以将所给出的递推公式进行变形,使问题转化为所熟知的bn+1=f(n)bn形式,当bn≠0时,变形得到(b(n+1))/bn=f(n),则由累乘法可得bn=bn/(b(n-1))·(b(n-1))/(b(n-2))…b3/b2·b2/b1·b1= f(n-1)f(n-2)…f(3)f(2)f(1)b1,若f(n-1)、f(n-2)、…、f(3)、f(2)、f(1)的积容易求出,则数列{bn}的通项公式可求出,从而得到数列{an}的通项公式.  相似文献   

14.
在数列中有一类常见的问题:递推公式.即:已知数列{an}中,首项为a1或a1,a2,a3,…,ak,且当n>1,n∈N时有an=f(an-1)或an=f(an-1,an-2…an-k),则可由这一递推公式得出数列{an}中的任意一项.  相似文献   

15.
<正>一、在数列中的应用数列递推技巧的核心本质是同构,对于等差、等比型的数列问题,利用所给递推公式依序同构,是解题思路形成的理论依据.例1在数列{an}中,a1=1,a2=130,an+1-130an+an-1=0(n≥2,n∈N*).(1)若数列{an+1+λan}是等比数列,求实数λ;(2)略.  相似文献   

16.
让我们先来看两道例题:例1已知数列{a n}:6,9,14,23,40试求该数列的通项公式.解记an+1?an=bn,则{b n}:3,5,9,17记bn+1?bn=cn,则{c n}:2,4,8.∴cn=2n.bn=b1+(b2?b1)+(b3?b2)++(b n?bn?1)=b1+c1+c2++cn?1=3+2+22++2n?1=2n+1,an=a1+b1+b2++bn?1=6+(2+1)+(22+1)++(2n?1+1)=6+(2+22++2n?1)+(n?1)=2n+n+3,∴数列{a n}的通项公式为:an=2n+n+3.例2已知数列{a n}:1,7,16,30,53,93,166试求该数列的通项公式.类似于例1可得数列{a n}的通项公式为:an=2n+n2/2+5n/2?4.总结例1与例2,若将原数列{a n}算作“第1阶”,则例1中的数列{a n}是在“逐差”至“第3阶…  相似文献   

17.
一、递推式为an+1=pan+q(p,q为常数)型 [例1] 已知数列{an}中,a1=1,对于n>1(n∈N*)有an=3an-1+2,求an 策略一:充分利用递推式,通过对n取n-1,n-2,...,3,2进行叠代寻求答案.  相似文献   

18.
错在哪里?     
《中学数学教学》2015,(1):64-65
<正>1江苏省海州高级中学冯善状(邮编:222023)题已知两个等比数列{an},{bn},满足a1=a,b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值.错解1因为数列{bn}是等比数列,所以b22=b1b3,故(2+a2)2=(1+a1)(3+a3),设等比  相似文献   

19.
我们知道数列通项 an 具有如下两个常见的基本变形式 :差式变形式 :an=(an- an-1 ) (an+ 1 - an-2 ) +…+(a2 - a1 ) +a1 . 1商式变形式 :an=anan-1· an-1 an-2·…· a3 a2· a2a1·a1 . 21式可以应用于求递推关系式为 :an+ 1 =an+g(n)型数列的通项公式 ;2式可以应用于求递推关系式为 :an+ 1 =f(n)× an型数列的通项公式 .而对求递推关系式为 :an+ 1 =kan+g(n) (k≠ 1 ) ( )型的通项公式就失效 .近期有杂志刊文介绍对 an+ 1 =kan+g(n) (k≠1 )型的通项公式求法 .不外乎两种方法 :其一是将an+ 1 =kan+g(n) (k≠ 1 )转化为 :an- h(n) =k{ an…  相似文献   

20.
权宽一 《中学理科》2004,(10):20-21
[2 0 0 3年天津文 (1 9) ]  已知数列{an}满足a1=1 ,an=3 n -1 an-1(n≥ 2 ) ,求an=?解 :由已知an-an -1=3 n -1,故an=(an-an-1) (an -1-an -2 ) … (a2 -a1) a1=3 n-1 3 n -2 … 3 1 =3 n-12 .变式 1 )已知数列 {an}满足a1=1 ,an=3(n -1 ) an -1(n≥ 2 ) ,求an=?解 :由已知an-an -1=3 (n -1 ) ,故an=(an-an -1) (an-1-an-2 ) … (a2 -a1) a1=3 (n -1 ) 3 (n -2 ) … 3 (2 -1 ) 1=3n(n -1 )2 1 =3n2 -3n 22 .变式 2 )已知数列 {an}满足a1=1 ,an=3 -1-2an -1(n≥ 2 ) ,求an=?解 :由已知 {an}满足a1=1 ,an=3 -1-…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号