首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper explores whether facial microexpression state (FMES) changes can be used to identify moments of conceptual conflict, one of the pathways to conceptual change. It is known that when the preconditions of conceptual conflicts are met and conceptual conflicts are detected in students, it is then possible for conceptual change to take place. There were 102 university and high school students who were involved in this research, and about 80% of the participants held erroneous preconceptions on the scientific topic chosen. The results showed that FMES changes were detected in the majority of the students who made erroneous predictions as they underwent conceptual conflict. Furthermore, the lack of FMES change was shown to indicate a lowered likelihood of conceptual change, while the presence of FMES change doubled the likelihood of conceptual change. The results confirm that FMES can be useful in determining learners’ awareness of conflicting concepts and their progress towards scientific understanding. Educational implications are discussed.  相似文献   

2.
The effects of both computer animations of microscopic chemical processes occurring in a galvanic cell and conceptual change instruction based on chemical demonstrations on students' conceptions of current flow in electrolyte solutions were investigated. Preliminary results for verbal conceptual questions suggest that conceptual change instruction was effective at dispelling student misconceptions that electrons flow in aqueous solutions of electrochemical cells. Computer animations did not appear to have an effect on students' responses to visual or verbal conceptual questions. An animation/conceptual change interaction for verbal conceptual questions suggests that animations may prove distacting when the questions do not require students to visualize. Data from this study also suggests that lecture attendance and recitation participations helped students answer visual questions.  相似文献   

3.
This study was based on the framework of the “conflict map” to facilitate student conceptual learning about causes of the seasons. Instruction guided by the conflict map emphasizes not only the use of discrepant events, but also the resolution of conflict between students' alternative conceptions and scientific conceptions, using critical events or explanations and relevant perceptions and conceptions that explicate the scientific conceptions. Two ninth grade science classes in Taiwan participated in this quasi‐experimental study in which one class was assigned to a traditional teaching group and the other class was assigned to a conflict map instruction treatment. Students' ideas were gathered through three interviews: the first was conducted 1 week after the instruction; the second 2 months afterward; and the third at 8 months after the treatment. Through an analysis of students' interview responses, it was revealed that many students, even after instruction, had a common alternative conception that seasons were determined by the earth's distance to the sun. However, the instruction guided by the framework of the conflict map was shown to be a potential way of changing the alternative conception and acquiring scientific understandings, especially in light of long‐term observations. A detailed analysis of students' ideas across the interviews also strongly suggests that researchers as well as practicing teachers need to pay particular attention to those students who can simply recall the scientific fact without deep thinking, as these students may learn science through rote memorization and soon regress to alternative conceptions after science instruction. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 1089–1111, 2005  相似文献   

4.
The study investigated the predictive ability of two sociological theories of group decision making, the social decision scheme (SDS) and the valence distribution (DV) model. The theories were applied to a normal classroom setting of grade-9 and -10 students (N = 159) involved in a scientific inquiry—a simulation of scientific decision making. In their attempt to resolve conceptual conflicts concerning a pendulum's period, the students worked towards a consensus. It was discovered that student beliefs at the end of the simulation deviated from this group consensus. Neither the SDS or the DV theories could account for this result, except in one extreme case. The psychological state of the decision makers (vigilant, hypervigilant, etc.) was mildly associated with this deviation. The predictive function of the SDS and DV models was apparently severely hampered by the natural complexities common to classroom interactions. However, the study did illuminate factors that likely affect conceptual change in the context of classroom group decision making; and the study discovered strategies which students invented in order to maintain their alternative conceptions of motion related to the pendulum, in the face of conflicting evidence. These results are discussed in terms of the students' participation in the scientific inquiry.  相似文献   

5.
Based on conceptual change theory, cognitive conflict is known as an important factor in conceptual change even though there are still questions about its positive and negative effects on science learning. However, there is no reliable method by which to assess the cognitive conflict students experience in their learning. The purpose of this research was to develop an instrument for measuring secondary students' cognitive conflict levels as they learned science. The results of this study indicate that our instrument is a valid and reliable tool for measuring cognitive conflict levels. Factor analysis supported the model that cognitive conflict consists of four constructs: recognition of an anomalous situation, interest, anxiety, and cognitive reappraisal of the conflict situation. Implications for instruction and possibilities for future research are discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 585–603, 2003  相似文献   

6.
In recent years, there has been a strong push to transform STEM education at K-12 and collegiate levels to help students learn to think like scientists. One aspect of this transformation involves redesigning instruction and curricula around fundamental scientific ideas that serve as conceptual scaffolds students can use to build cohesive knowledge structures. In this study, we investigated how students use mass balance reasoning as a conceptual scaffold to gain a deeper understanding of how matter moves through biological systems. Our aim was to lay the groundwork for a mass balance learning progression in physiology. We drew on a general models framework from biology and a covariational reasoning framework from math education to interpret students' mass balance ideas. We used a constant comparative method to identify students' reasoning patterns from 73 interviews conducted with undergraduate biology students. We helped validate the reasoning patterns identified with >8000 written responses collected from students at multiple institutions. From our analyses, we identified two related progress variables that describe key elements of students' performances: the first describes how students identify and use matter flows in biology phenomena; the second characterizes how students use net rate-of-change to predict how matter accumulates in, or disperses from, a compartment. We also present a case study of how we used our emerging mass balance learning progression to inform instructional practices to support students' mass balance reasoning. Our progress variables describe one way students engage in three dimensional learning by showing how student performances associated with the practice of mathematical thinking reveal their understanding of the core concept of matter flows as governed by the crosscutting concept of matter conservation. Though our work is situated in physiology, it extends previous work in climate change education and is applicable to other scientific fields, such as physics, engineering, and geochemistry.  相似文献   

7.
This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one‐group pre‐, post‐, and retention quasi‐experimental design was used in the study. All students received tests for Atomic Achievement, Scientific Reasoning, and Atomic Dependent Reasoning before, 1 week after, and 8 weeks after learning. A total of 18 students, six from each class, were each interviewed for 1 hour before, immediately after, and 2 months after learning. A flow map was used to provide a sequential representation of the flow of students' scientific narrative elicited from the interviews, and to further analyze the level of scientific reasoning and conceptual change. Results show students' concepts of atoms, scientific reasoning, and conceptual change made progress, which is consistent with the interviewing results regarding the level of scientific reasoning and quantity of conceptual change. This study demonstrated that students' conceptual change and scientific reasoning could be improved through the SCCR learning project. Moreover, regression results indicated students' scientific reasoning contributed more to their conceptual change than to the concepts students held immediately after learning. It implies that scientific reasoning was pivotal for conceptual change and prompted students to make associations among new mental sets and existing hierarchical structure‐based memory. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 91–119, 2010  相似文献   

8.
The process of students' conceptual change was investigated during a computer‐supported physics unit in a Grade 10 science class. Computer simulation programs were developed to confront students' alternative conceptions in mechanics. A conceptual test was administered as a pre‐, post‐, and delayed posttest to determine students' conceptual change. Students worked collaboratively in pairs on the programs carrying out predict–observe–explain tasks according to worksheets. While the pairs worked on the tasks, their conversational interactions were recorded. A range of other data was collected at various junctures during instruction. At each juncture, the data for each of 12 students were analyzed to provide a conceptual snapshot at that juncture. All the conceptual snapshots together provided a delineation of the students' conceptual development. It was found that many students vacillated between alternative and scientific conceptions from one context to another during instruction, i.e., their conceptual change was context dependent and unstable. The few students who achieved context independent and stable conceptual change appeared to be able to perceive the commonalities and accept the generality of scientific conceptions across contexts. These findings led to a pattern of conceptual change which has implications for instructional practices. The article concludes with consequent implications for classsrooms. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 859–882, 1999  相似文献   

9.
10.
One of the factors affecting students' learning in science is their existing knowledge prior to instruction. The students' prior knowledge provides an indication of the alternative conceptions as well as the scientific conceptions possessed by the students. This study is concerned primarily with students' alternative conceptions and with instructional strategies to effect the learning of scientific conceptions; i.e., to effect conceptual change from alternative to scientific conceptions. The conceptual change model used here suggests conditions under which alternative conceptions can be replaced by or differentiated into scientific conceptions and new conceptions can be integrated with existing conceptions. The instructional strategy and materials were developed for a particular student population, namely, black high school students in South Africa, using their previously identified prior knowledge (conceptions and alternative conceptions) and incorporate the principles for conceptual change. The conceptions involved were mass, volume, and density. An experimental group of students was taught these concepts using the special instructional strategy and materials. A control group was taught the same concepts using a traditional strategy and materials. Pre- and posttests were used to assess the conceptual change that occurred in the experimental and control groups. The results showed a significantly larger improvement in the acquisition of scientific conceptions as a result of the instructional strategy and materials which explicitly dealt with student alternative conceptions.  相似文献   

11.
The purpose of this study was to explore the influences of text structure on students' conceptual change. Case studies were conducted of three sections of physics (Physical World, Physics, and Honors Physics) for 8 months of an academic year. Qualitative data (including observation field notes, interviews, videotapes, audiotapes, and questionnaires) were analyzed from the perspective of grounded theory by constant comparison through the framework of social constructivism. Results showed that individuals used refutational text to change their alternative conceptions, find support for their scientific preconceptions, gain the language necessary to discuss their ideas, and acquire new concepts. We also found instances, however, when students ignored the text and persisted with their alternative conception, or when students found support for their nonscientific ideas from refutational text. In these cases, we found that either the refutation was not direct enough to be effective, or students' reading strategies were insufficient to facilitate conceptual change. In investigating the power of refutational text, we found that refutational text does cause cognitive conflict. We also discovered that while cognitive conflict may be necessary for conceptual change to occur, it is not sufficient. Although refutational text is effective on the average for groups of students, it will need to be supplemented by discussion for individuals. J Res Sci Teach 34: 701–719, 1997.  相似文献   

12.
This study evaluated the effects of cooperative learning on students' verbal interaction patterns and achievement in a conceptual change instructional model in secondary science. Current conceptual change instructional models recognize the importance of student–student verbal interactions, but lack specific strategies to encourage these interactions. Cooperative learning may provide the necessary strategies. Two sections of low-ability 10th-grade students were designated the experimental and control groups. Students in both sections received identical content instruction on the particle model of matter using conceptual change teaching strategies. Students worked in teacher-assigned small groups on in-class assignments. The experimental section used cooperative learning strategies involving instruction in collaborative skills and group evaluation of assignments. The control section received no collaborative skills training and students were evaluated individually on group work. Gains on achievement were assessed using pre- and posttreatment administrations of an investigator-designed short-answer essay test. The assessment strategies used in this study represent an attempt to measure conceptual change. Achievement was related to students' ability to correctly use appropriate scientific explanations of events and phenomena and to discard use of naive conceptions. Verbal interaction patterns of students working in groups were recorded on videotape and analyzed using an investigator-designed verbal interaction scheme. The targeted verbalizations used in the interaction scheme were derived from the social learning theories of Piaget and Vygotsky. It was found that students using cooperative learning strategies showed greater achievement gains as defined above and made greater use of specific verbal patterns believed to be related to increased learning. The results of the study demonstrated that cooperative learning strategies enhance conceptual change instruction. More research is needed to identify the specific variables mediating the effects of cooperative learning strategies on conceptual change learning. The methods employed in this study may provide some of the tools for this research.  相似文献   

13.
This study investigated whether video lectures instructed by a heightened level of expressiveness instructor were better than those instructed by a conventional level of expressiveness instructor or audio-only in promoting students' online learning, and what kind of effects do instructor's facial expressions have on students' learning. Three different types of video lectures (one with a heightened level of expressiveness instructor, one with a conventional level of expressiveness instructor and one with the instructor' audio only) were used to study the effects of instructor's facial expressions. Sixty-nine participants from Chinese Normal University were selected to learn with these video lectures. Results of this study indicated that video lectures with a heightened level of expressiveness instructor were better than those with a conventional level of expressiveness instructor and audio-only ones with regard to improving students' arousal level and learning satisfaction. Instructor's facial expressions had no significant influence on participants' short-term recall (p = .90), while instructor's facial expressions did influence students' medium-term recall (p = .03). Instructor's facial expressions played a key role in students' online learning.  相似文献   

14.
15.
This study investigated teacher preference, the degree to which a teacher likes a specific student, as a predictor of students' perceptions of teacher preference as well as conflict and support in the student–teacher relationship. Child and teacher reports of teacher preference and child reports of conflict and support were provided in the fall and spring of one academic year. Participants included 1,104 fourth‐grade students in 10 schools. Results indicated that teacher preference predicted change in children's perceived teacher preference. In addition, lower levels of teacher preference directly predicted higher subsequent levels of conflict, but not support. Because teacher preference and children's perceptions of teacher preference were related, lower levels of teacher preference also indirectly predicted higher levels of conflict and lower levels of support. Discussion focuses on the implications of the findings from a dyadic systems conceptualization of student–teacher relationships. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
This article reports a study on using data mining to predict K–12 students' competence levels on test items related to energy. Data sources are the 1995 Third International Mathematics and Science Study (TIMSS), 1999 TIMSS‐Repeat, 2003 Trend in International Mathematics and Science Study (TIMSS), and the National Assessment of Educational Progress (NAEP). Student population performances, that is, percentages correct, are the object of prediction. Two data mining algorithms, C4.5 and M5, are used to construct a decision tree and a linear function to predict students' performance levels. A combination of factors related to content, context, and cognitive demand of items and to students' grade levels are found to predict student population performances on test items. Cognitive demands have the most significant contribution to the prediction. The decision tree and linear function agree with each other on predictions. We end the article by discussing implications of findings for future science content standard development and energy concept teaching. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 554–573, 2008  相似文献   

17.
This study investigated the conceptual understanding of measures of spread among community college students in an introductory statistics course. The course is centered around deemphasizing computational skills and focused, rather, on development of conceptual understanding. Open-ended questions were developed to explore and assess students' conceptual understanding of measures of spread. A detailed analysis of the students' responses is presented to reveal the range of students' conceptions of the measures of spread. The analysis of a wide variety of responses provides evidence of the students' ability to organize concepts of spread in a way that is meaningful to them individually. Some common student misconceptions revealed by this study should be examined closely and taken into consideration to promote students' development of understanding of spread.  相似文献   

18.
The purpose of this study was to examine the ways in which elementary teachers applied their understanding of conceptual learning and teaching to their instructional practices as they became knowledgeable about conceptual change pedagogy. Teachers' various ways to interpret and utilize students' prior ideas were analyzed in both epistemological and ontological dimensions of learning. A total of 14 in‐service elementary teachers conducted an 8‐week‐long inquiry into students' conceptual learning as a professional development course project. Major data sources included the teachers' reports on their students' prior ideas, lesson plans with justifications, student performance artifacts, video‐recorded teaching episodes, and final reports on their analyses of student learning. The findings demonstrated three epistemologically distinct ways the teachers interpreted and utilized students' prior ideas. These supported Kinchin's epistemological categories of perspectives on teaching including positivist, misconceptions, and systems views. On the basis of Chi's and Thagard's theories of conceptual change, the teachers' ontological understanding of conceptual learning was differentiated in two ways. Some teachers taught a unit to change the ontological nature of student ideas, whereas the others taught a unit within the same ontological categories of student ideas. The findings about teachers' various ways of utilizing students' prior ideas in their instructional practices suggested a number of topics to be addressed in science teacher education such as methods of utilizing students' cognitive resources, strategies for purposeful use of counter‐evidence, and understanding of ontological demands of learning. Future research questions were suggested. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1292–1317, 2007  相似文献   

19.
The authors examined the relationships among teacher classroom practices, student motivation, and mathematics achievement in high school. The data for this study was drawn from the base-year data of High School Longitudinal Study of 2009. Structural equation modeling method was used to estimate the relationships among variables. The results indicate that conceptual teaching positively affected student mathematics achievement, whereas procedural emphasis in mathematics instruction had a negative effect. Teacher support influenced student mathematics achievement indirectly through students' mathematics self-efficacy, and also influenced students' interest in mathematics courses. Finally, students with higher levels of family socioeconomic status and prior achievement were more likely to have teachers who use conceptual teaching strategies. Students with higher prior achievement were also more likely to perceive higher levels of teacher support. The findings have theoretical and practical implications.  相似文献   

20.
Two reasons are suggested for studying the degree of conceptual integration in student thinking. The linking of new material to existing knowledge is an important aspect of meaningful learning. It is also argued that conceptual coherence is a characteristic of scientific knowledge and a criterion used in evaluating new theories. Appreciating this ‘scientific value’ should be one objective when students learn about the nature of science. These considerations imply that students should not only learn individual scientific models and principles, but should be taught to see how they are linked together. The present paper describes the use of an interview protocol designed to explore conceptual integration across two college‐level subjects (chemistry and physics). The novelty here is that a single interview is used to elicit explanations of a wide range of phenomena. The potential of this approach is demonstrated through an account of one student's scientific thinking, showing both how she applied fundamental ideas widely, and also where conceptual integration was lacking. The value and limitations of using this type of interview as one means for researching conceptual integration in students' thinking are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号