首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

2.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

3.
(a+b)/2≥ab1/2(a,b∈R+,当且仅当a=b时取"="号),(a+b)/2为a,b的算术平均数,ab1/2为a,b的几何平均数.此不等式即两个正数的算术平均数不小于它们的几何平均数的均值定理.应用均值定理时,需满足正(a,b均大于0)、定(a,b的和或积为定值)、等(a=b可以成立)三个条件.但是一些学生在应用解题时,常会出现貌似合理的解法,却造成矛盾或错误的结果等现象,究其原因,往往是对均值不等式中的"="的理解出现误区所致.实际上,均值不等式本身有其双重性.一方面,  相似文献   

4.
陕西安振平老师在文[1][2]两次提出了如下一个颇有难度的无理不等式猜想,即已知a,b,c为正实数,则(a2/(a2+26bc))1/3+(b2/(b2+26ac))1/3+(c2/(c2+26ab))1/3≥1.(1)笔者经过一年多研究发现这个猜想不等式是成立的,现给出证明.证明:设x=(bc)/(a2),y=(ac)/(b2),z=(ab)/(c2),则不等式(1)等价于下面命题,即x,y,z为正实数且xyz=1.则  相似文献   

5.
<正>在学习过程中,同学们会经常遇到不等式问题,经过归纳总结以及分析感悟,我觉得对于高中阶段的不等式问题,只要掌握了基本不等式的性质及解法,其他问题都会迎刃而解。1.基本不等式:(1)a,b∈R时,a2+b2+b2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2+b2+b2/2,当且仅当a=b时取等号。  相似文献   

6.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

7.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

8.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

9.
正基本不等式:1/2(ab)≤(a+b)/2(其中a≥0,b≥0)当且仅当a=b时等号成立,当1/2(ab)=(a+b)/2,此时即1/2(1/2a-1/2b)2=0,可看出a=b.a=b一方面可看作不等式成立的特殊情况,另一方面也可看作恒等式成立的条件.基本不等式等号成立的条件有两个:①两数非负,②两数相等,这就说明基本不等式等号成立对条件有着较强的要求.反过来如果基本  相似文献   

10.
1相关问题问题1[1]已知a,b均为正数,且1/a+2/b=1/4,求a+b+(a2+b2)1/2的最小值.问题2[2]过点P(31/2/2,1/2)任作一条直线分别交x轴、y轴的正半轴于点M,N.(1)略;(2)求|OM|+|ON|-|MN|的最大值.  相似文献   

11.
众所周知,绝对值有如下几条简单的性质:(1)若x是小于1的正数,则a≥xa(当且仅当a=0时取等号);(2)a=-a;(3)a+b+c≥a+b+c.本文利用上述几条性质,通过添加系数,简洁求解两道二元函数的最小值,供参考.例1设x和y是任意实数,求表达式2x-y-1+x+y+y的最小值.这是2006年莫斯科大学数学力学系入学考试数学试卷的一道压轴题,文[1]在文末征求简便解法,下面给出一种简便方法.  相似文献   

12.
一、连续使用例1 已知a/x+b/y=1,求x+y的最小值。(x、y、a、b均正数) 错解∵1=a/x+b/y≥2((ab/xy)~(1/2)) ∴(xy)~(1/2)≥2((ab)~(1/2)) ∴(x+y)≥2((xy)~(1/2))≥4((ab)~(1/2)) ∴x+y的最小值为4((ab)~(1/2)) 批注第一个“≥”中等号成立的条件为x=y,第二个“≥”中等号成立的条件为a/x=b/y,两者只有在a=b时才是相容的,而原题未给出这个条件。正确的解法为:  相似文献   

13.
先证明对于任意正实数a,b都有a+b≥2(ab)1/2.证明:a,b都大于0,所以(a1/2-b1/2)2≥0,所以a-2(ab)1/2+b≥0,所以a+b≥2(ab)1/2.当a=b时,a+b=2(ab)1/2.  相似文献   

14.
不等式求最值,是高中的一个重点,也是一个难点.本文推出一个简单的不等式,其结构由双曲线方程而得出,故简称双曲线形不等式.定理:已知a,b≠0,且有x2/a2-y2/b2=1,則有a2-b2≤(x-y)2,当且仅当b2 x=a2 y时取等号.证明:(a2-b2)·(x2/a2-y2/b2)=x2+y2-(b2 x2/a2+a2 y2/b2)≤x2+y2-2bx/a·ay/b=x2+y2-2xy=(x-y)2,  相似文献   

15.
现将基本不等式a2 +b2 ≥ 2ab推广如下 :定理 若x、y、a、b均为正数 ,则有xax+y+ ybx+y ≥ (x+ y)axby,( )当且仅当a=b时等号成立 .证明 由加权不等式得xax+yx+ y+ ybx+yx+ y≥ (ax+y) xx+y· (bx+y) yx+y,即xax+y+ ybx+y ≥ (x+y)axby,当且仅当ax+y =bx+y,即a=b时等号成立 .( )式可变形为ax+yby ≥ x+ yx ax - yxbx,( )利用上述变形 ( )式 ,来证明某些分式不等式 ,能起到化繁为简 ,化难为易之功效 .现举例说明如下 :例 1  (《数学通报》问题 871)设n∈N ,α、β∈(0 ,π2 ) ,求证 :sinn+2 αcosnβ + cosn+2 αsinnβ ≥ 1.证明 由 …  相似文献   

16.
性质1设点P(m,n)是第一象限内的定点,直线l:x/a+y/b=1过点P(m,n),且截距a,b均大于零,则(1)当b/a=(n/m)1/2时,a+b有最小值m+n+ 2(mn)1/2;(2)当b/a=n/m时,ab有最小值4mn.  相似文献   

17.
《数学通报》2020年9期数学问题2562给出了不等式:已知a,b,c>0满足a+b+c=3,则1-ab 1+ab+1-bc 1+bc+1-ca 1+ca≥0(1).不等式结构对称,值得关注.为此,本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.为了表述方便,由∑n k=1 x k y k·∑n k=1 x ky k=∑n k=1 x k y k 2·∑n k=1 x ky k 2≥∑n k=1 x k 2,可得柯西不等式的一个变式:引理设x 1,x 2,…,x n>0,y 1,y 2,…,y n>0,则有∑n k=1 x k y k≥(∑n k=1 x k)2∑n k=1 x ky k(2),等号当且仅当y 1=y 2=…=y n时成立.  相似文献   

18.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

19.
1 问题提出我们经常看到这样一道题:已知a >0 ,b >0 ,且a b =1 ,求(a 1a) 2 (b 1b) 2 的最小值.该题通常这样求解:(a 1a) 2 (b 1b) 2 =a2 b2 1a2 1b2 4=(a b) 2 -2ab 1a2 1b2 4=5 -2ab 1a2 1b2 ≥5 -2 ( a b2 ) 2 2ab=92 2ab≥92 2( a b2 ) 2=2 52 .当且仅当a =b时取等号.作为上题的推广,我们自然会想到问题1 :已知x >0 ,y >0 ,且x y =1 ,求函数f1(x ,y) =(x 1x) 3 ( y 1y) 3的最小值.对于问题1 ,我们同样可以如下求解:由题设条件可求得0 相似文献   

20.
我们知道,对于任意的实数a和b,有a2+ b2≥2ab(1)当且仅当a=b时取等号,若ab >0,在(1)的两边同除以ab,即得a/b+b/a≥2(2),当且仅当a=b时取等号. 在(1)中,若令u=a2,v=b2,显然u≥0, v≥0。则有,当且仅当u=v时取等号,现在我们利用这些重要不等式来解一  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号