首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orlando and Thissen's S‐X 2 item fit index has performed better than traditional item fit statistics such as Yen's Q1 and McKinley and Mill's G2 for dichotomous item response theory (IRT) models. This study extends the utility of S‐X 2 to polytomous IRT models, including the generalized partial credit model, partial credit model, and rating scale model. The performance of the generalized S‐X 2 in assessing item model fit was studied in terms of empirical Type I error rates and power and compared to G2. The results suggest that the generalized S‐X 2 is promising for polytomous items in educational and psychological testing programs.  相似文献   

2.
A polytomous item is one for which the responses are scored according to three or more categories. Given the increasing use of polytomous items in assessment practices, item response theory (IRT) models specialized for polytomous items are becoming increasingly common. The purpose of this ITEMS module is to provide an accessible overview of polytomous IRT models. The module presents commonly encountered polytomous IRT models, describes their properties, and contrasts their defining principles and assumptions. After completing this module, the reader should have a sound understating of what a polytomous IRT model is, the manner in which the equations of the models are generated from the model's underlying step functions, how widely used polytomous IRT models differ with respect to their definitional properties, and how to interpret the parameters of polytomous IRT models.  相似文献   

3.
The posterior predictive model checking method is a flexible Bayesian model‐checking tool and has recently been used to assess fit of dichotomous IRT models. This paper extended previous research to polytomous IRT models. A simulation study was conducted to explore the performance of posterior predictive model checking in evaluating different aspects of fit for unidimensional graded response models. A variety of discrepancy measures (test‐level, item‐level, and pair‐wise measures) that reflected different threats to applications of graded IRT models to performance assessments were considered. Results showed that posterior predictive model checking exhibited adequate power in detecting different aspects of misfit for graded IRT models when appropriate discrepancy measures were used. Pair‐wise measures were found more powerful in detecting violations of the unidimensionality and local independence assumptions.  相似文献   

4.
The applications of item response theory (IRT) models assume local item independence and that examinees are independent of each other. When a representative sample for psychometric analysis is selected using a cluster sampling method in a testlet‐based assessment, both local item dependence and local person dependence are likely to be induced. This study proposed a four‐level IRT model to simultaneously account for dual local dependence due to item clustering and person clustering. Model parameter estimation was explored using the Markov Chain Monte Carlo method. Model parameter recovery was evaluated in a simulation study in comparison with three other related models: the Rasch model, the Rasch testlet model, and the three‐level Rasch model for person clustering. In general, the proposed model recovered the item difficulty and person ability parameters with the least total error. The bias in both item and person parameter estimation was not affected but the standard error (SE) was affected. In some simulation conditions, the difference in classification accuracy between models could go up to 11%. The illustration using the real data generally supported model performance observed in the simulation study.  相似文献   

5.
As item response theory has been more widely applied, investigating the fit of a parametric model becomes an important part of the measurement process. There is a lack of promising solutions to the detection of model misfit in IRT. Douglas and Cohen introduced a general nonparametric approach, RISE (Root Integrated Squared Error), for detecting model misfit. The purposes of this study were to extend the use of RISE to more general and comprehensive applications by manipulating a variety of factors (e.g., test length, sample size, IRT models, ability distribution). The results from the simulation study demonstrated that RISE outperformed G2 and S‐X2 in that it controlled Type I error rates and provided adequate power under the studied conditions. In the empirical study, RISE detected reasonable numbers of misfitting items compared to G2 and S‐X2, and RISE gave a much clearer picture of the location and magnitude of misfit for each misfitting item. In addition, there was no practical consequence to classification before and after replacement of misfitting items detected by three fit statistics.  相似文献   

6.
In this article, I address two competing conceptions of differential item functioning (DIF) in polytomously scored items. The first conception, referred to as net DIF, concerns between-group differences in the conditional expected value of the polytomous response variable. The second conception, referred to as global DIF, concerns the conditional dependence of group membership and the polytomous response variable. The distinction between net and global DIF is important because different DIF evaluation methods are appropriate for net and global DIF; no currently available method is universally the best for detecting both net and global DIF. Net and global DIF definitions are presented under two different, yet compatible, modeling frameworks: a traditional item response theory (IRT) framework, and a differential step functioning (DSF) framework. The theoretical relationship between the IRT and DSF frameworks is presented. Available methods for evaluating net and global DIF are described, and an applied example of net and global DIF is presented.  相似文献   

7.
Successful administration of computerized adaptive testing (CAT) programs in educational settings requires that test security and item exposure control issues be taken seriously. Developing an item selection algorithm that strikes the right balance between test precision and level of item pool utilization is the key to successful implementation and long‐term quality control of CAT. This study proposed a new item selection method using the “efficiency balanced information” criterion to address issues with the maximum Fisher information method and stratification methods. According to the simulation results, the new efficiency balanced information method had desirable advantages over the other studied item selection methods in terms of improving the optimality of CAT assembly and utilizing items with low a‐values while eliminating the need for item pool stratification.  相似文献   

8.
In typical differential item functioning (DIF) assessments, an item's DIF status is not influenced by its status in previous test administrations. An item that has shown DIF at multiple administrations may be treated the same way as an item that has shown DIF in only the most recent administration. Therefore, much useful information about the item's functioning is ignored. In earlier work, we developed the Bayesian updating (BU) DIF procedure for dichotomous items and showed how it could be used to formally aggregate DIF results over administrations. More recently, we extended the BU method to the case of polytomously scored items. We conducted an extensive simulation study that included four “administrations” of a test. For the single‐administration case, we compared the Bayesian approach to an existing polytomous‐DIF procedure. For the multiple‐administration case, we compared BU to two non‐Bayesian methods of aggregating the polytomous‐DIF results over administrations. We concluded that both the BU approach and a simple non‐Bayesian method show promise as methods of aggregating polytomous DIF results over administrations.  相似文献   

9.
In observed‐score equipercentile equating, the goal is to make scores on two scales or tests measuring the same construct comparable by matching the percentiles of the respective score distributions. If the tests consist of different items with multiple categories for each item, a suitable model for the responses is a polytomous item response theory (IRT) model. The parameters from such a model can be utilized to derive the score probabilities for the tests and these score probabilities may then be used in observed‐score equating. In this study, the asymptotic standard errors of observed‐score equating using score probability vectors from polytomous IRT models are derived using the delta method. The results are applied to the equivalent groups design and the nonequivalent groups design with either chain equating or poststratification equating within the framework of kernel equating. The derivations are presented in a general form and specific formulas for the graded response model and the generalized partial credit model are provided. The asymptotic standard errors are accurate under several simulation conditions relating to sample size, distributional misspecification and, for the nonequivalent groups design, anchor test length.  相似文献   

10.
Missing data are a common problem in a variety of measurement settings, including responses to items on both cognitive and affective assessments. Researchers have shown that such missing data may create problems in the estimation of item difficulty parameters in the Item Response Theory (IRT) context, particularly if they are ignored. At the same time, a number of data imputation methods have been developed outside of the IRT framework and been shown to be effective tools for dealing with missing data. The current study takes several of these methods that have been found to be useful in other contexts and investigates their performance with IRT data that contain missing values. Through a simulation study, it is shown that these methods exhibit varying degrees of effectiveness in terms of imputing data that in turn produce accurate sample estimates of item difficulty and discrimination parameters.  相似文献   

11.
Using Muraki's (1992) generalized partial credit IRT model, polytomous items (responses to which can be scored as ordered categories) from the 1991 field test of the NAEP Reading Assessment were calibrated simultaneously with multiple-choice and short open-ended items. Expected information of each type of item was computed. On average, four-category polytomous items yielded 2.1 to 3.1 times as much IRT information as dichotomous items. These results provide limited support for the ad hoc rule of weighting k-category polytomous items the same as k - 1 dichotomous items for computing total scores. Polytomous items provided the most information about examinees of moderately high proficiency; the information function peaked at 1.0 to 1.5, and the population distribution mean was 0. When scored dichotomously, information in polytomous items sharply decreased, but they still provided more expected information than did the other response formats. For reference, a derivation of the information function for the generalized partial credit model is included.  相似文献   

12.
IRT下题量与被试量对参数估计模拟返真性能的影响   总被引:1,自引:0,他引:1  
在项目反应理论下的题库建设时,进行纸笔测验测试时需要多少被试量、题量,试题的参数估计能够达到较为精确估计?本文使用蒙特卡洛模拟方法模拟测验情境,对此问题进行探讨。分析题量的变化和被试量的变化对a、b参数估计的模拟返真性能的影响。1)从被试量角度来看,在两级、多级记分试题模拟测验情境下,随着被试量逐渐增大,项目参数估计值模拟返真指标均方误差逐渐减小。2)从题量角度来看,在两级记分试题模拟情境下,均方误差曲线在题量为25题左右时有一个拐点,即当题量小于25题时,随着题量增加时RMSE减小幅度较大,而当题量大于25题时,这时再增加题量,RMSE减小幅度很小。在多级记分试题模拟情境下,均方误差曲线在题量为15题左右时有一个拐点,即当题量小于15题时,随着题量增加, RMSE逐渐减小,当题量大于15题时,随着题量增加,RMSE逐渐增大。  相似文献   

13.
Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items. When tests are equated across forms, researchers check for the stability of common items before including them in equating procedures. Stability is usually examined in relation to polytomous items' central “location” on the scale without taking into account the stability of the different item scores (step difficulties). We examined the stability of score scales over a 3–5-year period, considering both stability of location values and stability of step difficulties for common item equating. We also investigated possible changes in the scale measured by the tests and systematic scale drift that might not be evident in year-to-year equating. Results across grades and content areas suggest that equating results are comparable whether or not the stability of step difficulties is taken into account. Results also suggest that there may be systematic scale drift that is not visible using year-to-year common item equating.  相似文献   

14.
This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item‐level multidimensionality, and (2) whether a Projection IRT model can provide a useful remedy. A real‐data example is used to illustrate the problem and also is used as a base model for a simulation study. The results suggest that ignoring item‐level multidimensionality might lead to inflated item discrimination parameter estimates when the proportion of multidimensional test items to unidimensional test items is as low as 1:5. The Projection IRT model appears to be a useful tool for updating unidimensional item parameter estimates of multidimensional test items for a purified unidimensional interpretation.  相似文献   

15.
The accuracy of CAT scores can be negatively affected by local dependence if the CAT utilizes parameters that are misspecified due to the presence of local dependence and/or fails to control for local dependence in responses during the administration stage. This article evaluates the existence and effect of local dependence in a test of Mathematics Knowledge. Diagnostic tools were first used to evaluate the existence of local dependence in items that were calibrated under a 3PL model. A simulation study was then used to evaluate the effect of local dependence on the precision of examinee CAT scores when the 3PL model was used for selection and scoring. The diagnostic evaluation showed strong evidence for local dependence. The simulation suggested that local dependence in parameters had a minimal effect on CAT score precision, while local dependence in responses had a substantial effect on score precision, depending on the degree of local dependence present.  相似文献   

16.
Sometimes, test‐takers may not be able to attempt all items to the best of their ability (with full effort) due to personal factors (e.g., low motivation) or testing conditions (e.g., time limit), resulting in poor performances on certain items, especially those located toward the end of a test. Standard item response theory (IRT) models fail to consider such testing behaviors. In this study, a new class of mixture IRT models was developed to account for such testing behavior in dichotomous and polytomous items, by assuming test‐takers were composed of multiple latent classes and by adding a decrement parameter to each latent class to describe performance decline. Parameter recovery, effect of model misspecification, and robustness of the linearity assumption in performance decline were evaluated using simulations. It was found that the parameters in the new models were recovered fairly well by using the freeware WinBUGS; the failure to account for such behavior by fitting standard IRT models resulted in overestimation of difficulty parameters on items located toward the end of the test and overestimation of test reliability; and the linearity assumption in performance decline was rather robust. An empirical example is provided to illustrate the applications and the implications of the new class of models.  相似文献   

17.
An IRT‐based sequential procedure is developed to monitor items for enhancing test security. The procedure uses a series of statistical hypothesis tests to examine whether the statistical characteristics of each item under inspection have changed significantly during CAT administration. This procedure is compared with a previously developed CTT‐based procedure through simulation studies. The results show that when the total number of examinees is fixed both procedures can control the rate of type I errors at any reasonable significance level by choosing an appropriate cutoff point and meanwhile maintain a low rate of type II errors. Further, the IRT‐based method has a much lower type II error rate or more power than the CTT‐based method when the number of compromised items is small (e.g., 5), which can be achieved if the IRT‐based procedure can be applied in an active mode in the sense that flagged items can be replaced with new items.  相似文献   

18.
Bock, Muraki, and Pfeiffenberger (1988) proposed a dichotomous item response theory (IRT) model for the detection of differential item functioning (DIF), and they estimated the IRT parameters and the means and standard deviations of the multiple latent trait distributions. This IRT DIF detection method is extended to the partial credit model (Masters, 1982; Muraki, 1993) and presented as one of the multiple-group IRT models. Uniform and non-uniform DIF items and heterogeneous latent trait distributions were used to generate polytomous responses of multiple groups. The DIF method was applied to this simulated data using a stepwise procedure. The standardized DIF measures for slope and item location parameters successfully detected the non-uniform and uniform DIF items as well as recovered the means and standard deviations of the latent trait distributions.This stepwise DIF analysis based on the multiple-group partial credit model was then applied to the National Assessment of Educational Progress (NAEP) writing trend data.  相似文献   

19.
The aim of this study is to assess the efficiency of using the multiple‐group categorical confirmatory factor analysis (MCCFA) and the robust chi‐square difference test in differential item functioning (DIF) detection for polytomous items under the minimum free baseline strategy. While testing for DIF items, despite the strong assumption that all but the examined item are set to be DIF‐free, MCCFA with such a constrained baseline approach is commonly used in the literature. The present study relaxes this strong assumption and adopts the minimum free baseline approach where, aside from those parameters constrained for identification purpose, parameters of all but the examined item are allowed to differ among groups. Based on the simulation results, the robust chi‐square difference test statistic with the mean and variance adjustment is shown to be efficient in detecting DIF for polytomous items in terms of the empirical power and Type I error rates. To sum up, MCCFA under the minimum free baseline strategy is useful for DIF detection for polytomous items.  相似文献   

20.
In this article, procedures are described for estimating single-administration classification consistency and accuracy indices for complex assessments using item response theory (IRT). This IRT approach was applied to real test data comprising dichotomous and polytomous items. Several different IRT model combinations were considered. Comparisons were also made between the IRT approach and two non-IRT approaches including the Livingston-Lewis and compound multinomial procedures. Results for various IRT model combinations were not substantially different. The estimated classification consistency and accuracy indices for the non-IRT procedures were almost always lower than those for the IRT procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号