首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia.In order to secure the performance of URM under seismic loading in the future,a research project was carried out aimed at developing a simple and high strength seismic retrofitting technique for masonry structures.A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted.The results indicated that both the strength and ductility of the tested specimens were significantly enhanced with the technique.An analytical model which is based on Distinct Element Method (DEM) has also been developed to simulate the behaviour of URM walls before and after retrofitting.The model is then further developed by applying a seismic wave to the wall to simulate the wall behavior under earthquake loads before and after retrofitting.  相似文献   

2.
To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic loading in the future, a research project was carried out aimed at developing a simple and high strength seismic retrofitting technique for masonry structures. A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted. The results indicated that both the strength and ductility of the tested speci-mens were significantly enhanced with the technique. An analytical model which is based on Dis-tinct Element Method (DEM) has also been developed to simulate the behaviour of URM walls be-fore and after retrofitting. The model is then further developed by applying a seismic wave to the wall to simulate the wall behavior under earthquake loads before and after retrofitting.  相似文献   

3.
Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.  相似文献   

4.
Terrorist attacks using improvised explosive devices (IED) can result in unreinforced ma-sonry (URM) wall collapse. Protecting URM wall from IED attack is very complicated. An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy. However, mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world. In this paper, numerical models are used to simulate the per-formance of aluminum foam protected URM walls subjected to blast loads. A distinctive model, in which mortar and brick units of masonry are discritized individually, is used to model the perform-ance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model. The aluminum foam is modelled by a nonlinear elas-toplastic material model. The material models for masonry, aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads. Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.  相似文献   

5.
In this paper, numerical method is used to study the strain rate effect on masonry materials. A typical unit of masonry is selected to serve as a representative volume element (RVE). Numerical model of RVE is established with detailed distinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.  相似文献   

6.
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.  相似文献   

7.
Numerical Modeling of Response and Damage of Masonry Walls to Blast Loading   总被引:1,自引:0,他引:1  
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.  相似文献   

8.
Retrofitting of RC Slabs Against Explosive Loads   总被引:1,自引:0,他引:1  
With the increase of terrorist bomb attacks on buildings, there is a need to develop advanced retrofitting techniques to strengthen structures against blast loads. Currently, several guidelines including an Australian version for retrofitting reinforced concrete (RC) structures are available for the design of retrofitting systems against seismic and monotonic loads using steel or fibre reinforced polymer (FRP) plates that can be either adhesively bonded to the surface or near surface mounted to the concrete cover. However, none of these guidelines provide advice suitable for retrofitting structures subjected to blast loads. In this paper, numerical models are used to simulate the performance of retrofitted RC slabs subjected to blast loads. Airblast pressure distributions on the surface of the slabs estimated in a previous study are used as input in the analysis. A material damage model developed previously for concrete and an elastoplastic model for steel bars are employed in this research for modelling reinforced concrete behaviour due to explosive loads. The material models and blast loading are coded into a finite element computer program LS-DYNA3D to do the analysis. With the numerical model, parametric studies are conducted to investigate RC slabs retrofitted by either externally bonded or near-surface mounted plates or GFRP sheets subjected to blast loads. Discussion is made on the effectiveness of the retrofitting system for RC slabs against blast loads.  相似文献   

9.
高强混凝土墙耐火性能的有限元分析   总被引:1,自引:0,他引:1  
确定了钢材和混凝土热工参数和热一力本构关系,采用ABAQUS软件建立了火灾下高强混凝土墙温度分布和受力性能分析的有限元模型,计算结果得到以往实验结果的验证.在此基础上,对高强混凝土墙高温下的应力分布、混凝土裂缝以及重要影响因素进行了分析,初步了解了火灾下高强混凝土墙的力学性能,为进一步确定科学合理的抗火设计方法创造了条件.  相似文献   

10.
The study of the interfacial and bond behaviour of reinforced cement-based materials is important for understanding the mechanical behaviour of such composites. This paper presents extensive experimental, theoretical and finite element analyses of pull-out tests of galvanised steel strips with different geometries, in lightweight cement-based material blocks with different densities and mechanical properties. The theoretical model proposed here is capable of determining the pull-out strength and bond stress versus the slip relationship between components of reinforced cement-based materials. This bond-slip relationship is then implemented in finite element simulation through the user-defined subroutine of ABAQUS software. Based on the results, a trilinear bond-slip model is suitable for modelling the interface between a steel strip and a cement-based material interface.  相似文献   

11.
A study of the behaviour of constructional cold-formed stainless steel beams at elevated temperatures was conducted in this paper. An accurate finite element model (FEM) for stainless steel beams was developed using the finite element program ABAQUS. Stainless steel beams having different cross-sections were simulated in this study. The nonlinear FEM was verified against the experimental results. Generally, the developed FEM could accurately simulate the stainless steel beams. Based on the high temperature stainless steel material test results, a parametric study was carried out on stainless steel beams at elevated temperatures using the verified FEM. Both high strength stainless steel EN 1.4462 and normal strength stainless steel EN 1.4301 were considered. A total of 42 stainless steel beams were simulated in the parametric study. The effect of temperatures on the behaviour of stainless steel beams was investigated. In addition, a limiting temperature for stainless steel beams was also proposed.  相似文献   

12.
The behaviors of infill wall in earthquakes show that infill masonry walls,which are used as nonstructural elements of concrete frames,are vulnerable when they are subjected to earthquake.In order to achieve an optimal antiseismic behavior,or even stability,two methods of connection are investigated.The shaking table tests,with 1:3 scale walls of two-storey model subjected to horizontal earthquake loads,were carried out to investigate the out-of-plane behaviors with different connections between walls and beams.The test results show that the connection methods employed between walls and beams have a significant effect on the out-of-plane stability of infill walls.The walls bound by bars with the beams perform better than those with inclined bricks without gaps.  相似文献   

13.
Abstract: An innovative occupant friendly retrofitting technique has been developed for reinforced concrete (RC) building structures with hollow brick infill wails used as partition walls which constitute the major portion of the existing building stock in Turkey. The idea is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC wall by reinforcing it with relatively thin concrete plates bonded to the mortar coated infill wall by use of tile adhesive and fixed by qb6 (6 mm diameter) bolts. Test parameters were the shape and thickness of the plates, presence of reinforcement in plates, number and arrangement of O6 bolts. It was observed that lateral strength, stiffness, energy dissipation capacity, and ductility of the strengthened infill walls were improved and behaviour was enhanced by the proposed technique. Plates with two different basic shapes were used to strengthen the test specimens.  相似文献   

14.
Initial fabric anisotropy can greatly affect the shear behavior of particulate materials during shear. The bedding plane effect induced by particle orientation is one of the main fabric anisotropic factors that may affect other factors. It is hard to experimentally examine the effect of bedding direction of particles on the shear behavior of particulate materials, such as sand. A 2D discrete element method (DEM) is employed in this paper to study the influence of different orientations of oval particles on the behavior of dense assemblies under simple shear. As well as the macroscopic shear behavior, the evolution of particle orientation, contact normal, and inter-particle contact forces within the samples with different initial bedding angles during shear have been extensively examined. It was found that the initial bedding direction of the particles has great influence on the non-coaxiality between the directions of principal stress and principal strain increment. The bedding direction also affects the strength and dilatancy responses of DEM samples subjected to simple shear, and the samples with larger bedding angles exhibit higher shear strength and larger volume dilation. A modified stress-force-fabric relationship is proposed to describe the effect of particle bedding direction on the shear strength of samples, and the new equation can better describe the stress-force-fabric relationship of assemblies with initial anisotropic fabrics compared with the existing model.  相似文献   

15.
The mechanical behavior of sand is very complex, and depends on factors including confining pressure, density, and drainage condition. A soil mass can be contractive or dilative when subjected to shear loading, and eventually reaches an ultimate state, referred to as the critical state in soil mechanics. Conventional approach to explore the mechanical behavior of sand mainly relies on the experimental tests in laboratory. This paper gives an alternative view to this subject using discrete element method (DEM), which has attracted much attention in recent years. The implementation of the DEM is carried out by a series of numerical tests on granular assemblies with varying initial densities and confining pressures, under different test configurations. The results demonstrate that such numerical simulations can produce correct responses of the sand behavior in general, including the critical state response, as compared to experimental observations. In addition, the DEM can further provide details of the microstructure evolutions during shearing processes, and the resulting induced anisotropy can be fully captured and quantified in the particle scale.  相似文献   

16.
The design of rock support for a typical horseshoe shaped tunnel with considerations of it being excavated into a twin arch tunnel was studied using the distinct element method (DEM). Two different competent rock covers, i.e. 4 m and 7.5 m above the tunnel crown, were analysed. The results are relevant to the granitic geological unit in Singapore which has a weathering profile with rockhead found at some locations to be only 20–35 m below ground level and undulating, leaving limited rock cover for some sections along tunnels of similar depth. The verification of the adequacy of competent rock cover is important to ensure that the choice of ground support is suitable, particularly when the tunnel is excavated using the drill-and-blast method. In the opening geometry analysed in this study, a side drift is excavated adjacent to the first tunnel to create a twin arch opening. This creates a pillar between the openings during the intermediate construction stage. The influence of excavating the side drift on the support of the first opening was studied. We found that the bolt forces in the pillar approximately doubled during the excavation of the side drift, which may have been due to the rock joint inclinations and adopted strength parameters. This paper shows how DEM analyses may be used to complement conventional empirical rock mass classifications to design rock supports. Limitations of the pressure relaxation approach to model 3D effects in 2D are acknowledged.  相似文献   

17.
建筑砂浆胶凝材料存在的问题及对策   总被引:1,自引:0,他引:1  
目前建筑砂浆使用的胶凝材料主要是水泥和石灰,存在的主要问题是:生产水泥和石灰要消耗大量的矿物资源和能源,严重破坏环境;工程中往往用高强度等级水泥配制低强度等级砂浆,造成资源浪费;水泥石灰混合砂浆的物理力学性质及耐久性差,配制工艺复杂,不利于推广干混砂浆等.其解决对策是利用具有潜在胶凝活性的工业废渣研究开发能够替代水泥和石灰的建筑砂浆新型胶凝材料.  相似文献   

18.
U型钢筋混凝土地道桥的受力计算比较复杂,涉及到挡土墙土压力计算的水土分算和水土合算,本文通过大型有限元软件ANSYS,建立U型钢筋混凝土地道桥的有限元模型和力学模型,对其进行三维有限元荷载应力分析。  相似文献   

19.
为了研究移动荷载下路面结构内部细观结构的响应,采用离散元方法进行了多尺度路面结构移动荷载响应的分析.建立了柔性基层沥青路面典型结构的离散元模型,并计算了移动荷载作用下沥青层底的应力和应变,通过与已有经典计算程序荷栽响应计算结果的比较,验证了所建立的离散元模型.以该离散元模型为基础,在沥青混凝土结构层的底部,采用尺度较小的离散单元描述粗集料的体积含量、分布特征以及空隙大小等细观结构,以此建立路面结构的多尺度模型.对路面结构宏观响应与细观结构的荷载响应进行了比较分析,并分析了沥青砂浆劲度对细观结构处荷载响应的影响.结果表明:粗集料与沥青砂浆界面位置的拉应力均值和离散系数均大于沥青砂浆内部;荷载引起的应力和应变在沥青砂浆内部和界面内部均存在不均匀分布;沥青砂浆的劲度越大,沥青混凝土内部的荷载响应分布越趋于均匀.  相似文献   

20.
Harris and Livesey. Learning & Behavior, 38, 1-26, (2010) described an elemental model of associative learning that implements a simple learning rule that produces results equivalent to those proposed by Rescorla and Wagner (1972), and additionally modifies in "real time" the strength of the associative connections between elements. The novel feature of this model is that stimulus elements interact by suppressively normalizing one another's activation. Because of the normalization process, element activity is a nonlinear function of sensory input strength, and the shape of the function changes depending on the number and saliences of all stimuli that are present. The model can solve a range of complex discriminations and account for related empirical findings that have been taken as evidence for configural learning processes. Here we evaluate the model's performance against the host of conditioning phenomena that are outlined in the companion article, and we present a freely available computer program for use by other researchers to simulate the model's behavior in a variety of conditioning paradigms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号