首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing number of medical students and limited availability of cadavers have led to a reduction in anatomy teaching through human cadaveric dissection. These changes triggered the emergence of innovative teaching and learning strategies in order to maximize students learning of anatomy. An alternative approach to traditional dissection was presented in an effort to improve content delivery and student satisfaction. The objective of this study is to acquire three-dimensional (3D) anatomical data using structured-light surface scanning to create a dynamic four-dimensional (4D) dissection tool of four regions: neck, male inguinal and femoral areas, female perineum, and brachial plexus. At each dissection step, identified anatomical structures were scanned using a 3D surface scanner (Artec Spider™). Resulting 3D color meshes were overlaid to create a 4D (3D+time) environment. An educational interface was created for neck dissection. Its implementation in the visualization platform allowed 4D virtual dissection by navigating from surface to deep layers and vice versa. A group of 28 second-year medical students and 17 first-year surgery residents completed a satisfaction survey. A majority of medical students (96.4%) and 100% of surgery residents said that they would recommend this tool to their colleagues. According to surgery residents, the main elements of this virtual tool were the realistic high-quality of 3D acquisitions and possibility to focus on each anatomical structure. As for medical students, major elements were the interactivity and entertainment aspect, precision, and accuracy of anatomical structures. This approach proves that innovative solutions to anatomy education can be found to help to maintain critical content and student satisfaction in anatomy curriculum.  相似文献   

2.
Teaching time dedicated to anatomy education has been reduced at many medical schools around the world, including Nova Medical School in Lisbon, Portugal. In order to minimize the effects of this reduction, the authors introduced two optional, semester‐long cadaveric dissection courses for the first two years of the medical school curriculum. These courses were named Regional Anatomy I (RAI) and Regional Anatomy II (RAII). In RAI, students focus on dissecting the thorax, abdomen, pelvis, and perineum. In RAII, the focus shifts to the head, neck, back, and upper and lower limbs. This study prospectively analyzes students' academic achievement and perceptions within the context of these two, newly‐introduced, cadaveric dissection courses. Students' satisfaction was assessed anonymously through a questionnaire that included items regarding students' perception of the usefulness of the courses for undergraduate teaching, as well as with regards to future professional activity. For each of the three academic years studied, the final score (1 to 20) in General Anatomy (GA), RAI, and RAII was on average 14.26 ± 1.89; 16.94 ± 1.02; 17.49 ± 1.01, respectively. The mean results were lower in GA than RAI or RAII (P < 0.001). Furthermore, students who undertook these courses ranked them highly with regards to consolidating their knowledge of anatomy, preparing for other undergraduate courses, and training for future clinical practice. These survey data, combined with data on participating students' academic achievement, lend strong support to the adoption of similar courses as complementary and compulsory disciplines in a modern medical curriculum. Anat Sci Educ 10: 127–136. © 2016 American Association of Anatomists.  相似文献   

3.
Gross anatomy dissection in contemporary medical education must balance the traditional value of learning from the cadaver with the possibilities created by the use of digital tools as supplemental resources that personalize and deepen the student learning experience. This study broadly examined the design, implementation, and use of AnatomyShare, a novel iPad application employing learner-generated content that allows students to securely share annotated images of their dissections with each other and take faculty-generated image-based quizzes during their first-year medical school gross anatomy course. Almost all students enrolled in the course used the application (N = 176; 91% use based on analytics). Seventy-five students responded to a survey asking how and when they used the application, along with their perceptions of its usefulness and contribution to learning. More students reported using the application outside of laboratory (97.3%) than during laboratory (85.3%), despite only in-laboratory use being required. Taking quizzes using the “Exam” feature was the highest rated use of AnatomyShare, and students cited that the application exposed them to anatomical variation and motivated them to correctly identify structures during dissection. While steps need to be taken to combat low-quality learner-generated content and to enhance meaningful student interaction and collaboration, AnatomyShare was a feasible and highly rated supplement to dissection that provided valuable assessment opportunities for students. Future research will examine the impact of use on course grades and engagement in gross anatomy dissection.  相似文献   

4.
Due to the current trend of decreasing contact hours and less emphasis being given to the basic science courses in the pre-clinical years of medical education, it is essential that new approaches to teaching gross anatomy are investigated to ensure medical students are being adequately exposed to anatomical content. This study retrospectively analyzed practical examination data from four medical gross anatomy classes (N = 569) to ascertain which pedagogical approach, student participation in the dissection process, or interaction with prosected specimens is best for teaching the anatomy of the hand and foot. Data analysis involved the use of propensity score matching, a nonparametric preprocessing statistical approach which ensures accurate representation of the true treatment effect by balancing cohorts prior to statistical analysis. Statistical analysis indicated that those students who were exposed to the anatomy of the hand through interactions with prosected specimens performed 5.6% better (P = 0.012) while for the foot, students who interacted with prosections performed 13.0% better (P < 0.001). Although limited, data from this study suggest that utilizing prosections of the hand and foot seems to be a more advantageous pedagogical approach for teaching these regions than requiring students to dissect them.  相似文献   

5.
Checklists have been widely used in the aviation industry ever since aircraft operations became more complex than any single pilot could reasonably remember. More recently, checklists have found their way into medicine, where cognitive function can be compromised by stress and fatigue. The use of checklists in medical education has rarely been reported, especially in the basic sciences. We explored whether the use of a checklist in the gross anatomy laboratory would improve learning outcomes, dissection quality, and students' satisfaction in the first-year Human Structure didactic block at Mayo Medical School. During the second half of a seven-week anatomy course, dissection teams were each day given a hardcopy checklist of the structures to be identified during that day's dissection. The first half of the course was considered the control, as students did not receive any checklists to utilize during dissection. The measured outcomes were scored on four practice practical examinations and four dissection quality assessments, two each from the first half (control) and second half of the course. A student satisfaction survey was distributed at the end of the course. Examination and dissection scores were analyzed for correlations between practice practical examination score and checklist use. Our data suggest that a daily hardcopy list of anatomical structures for active use in the gross anatomy laboratory increases practice practical examination scores and dissection quality. Students recommend the use of these checklists in future anatomy courses.  相似文献   

6.
Given the important role that anatomical dissection plays in the shaping of medical student attitudes to life and death, these attitudes have not been evaluated in the context of whole body donation for medical science. First year students of anatomy in an Irish university medical school were surveyed by questionnaire before and after the initial dissection and again after 9 weeks of anatomical dissection. Analysis of student responses to the idea of whole body donation by an unrelated stranger, a family member, or by the respondent showed that a priori attitudes to donation by a stranger did not change with exposure to dissection. However, student opposition to donation by a family member was evident immediately after the initial dissection and was sustained throughout the duration of this study. Support for the idea of donating their bodies to medical science decreased significantly among respondents after exposure to dissection (31.5% before dissection, 19.6% after dissecting for 9 weeks) but not to levels reported in the general population in other studies. This study demonstrates that where dissection forms a part of anatomy teaching, students expect to learn anatomy by dissecting donors whom they do not know. As a potential donor population, students are reluctant to become emotionally involved in the donation process and are unwilling to become donors themselves. Anat Sci Ed 1:212–216, 2008. © 2008 American Association of Anatomists.  相似文献   

7.
Pathology and anatomy are both sciences that contribute to the foundations of a successful medical career. In the past decade, medical education has undergone profound changes with the development of a core curriculum combined with student selected components. There has been a shift from discipline‐based teaching towards problem‐based learning. Both anatomy and pathology are perceived to have suffered from this educational shift. The challenge is to introduce methods of learning for these subjects into an integrated student‐centered curriculum. The purpose of this study was to determine the prevalence of pathology in 12 donor cadavers in the dissecting room of the Bute Medical School, University of St Andrews. All of the cadavers had multiple pathologies (between three to four conditions) ranging from common to rare disorders. A number of prostheses and surgical interventions were also noted. This small study confirms that cadaveric dissection provides an excellent opportunity for the integration of anatomy, pathology, and clinical medicine into the early clinical training of undergraduate medical students. The identification of disease in a cadaver provides an excellent introduction to the gross features of a disease process, but does not substitute for the detailed study of a process later in the curriculum. Anat Sci Educ 3: 97–100, 2010. © 2010 American Association of Anatomists.  相似文献   

8.
The contribution of donor dissection to modern anatomy pedagogy remains debated. While short-term anatomy knowledge gains from dissection are questionable, studies suggest that donor dissection may have other impacts on students including influencing medical students' professional development, though evidence for such is limited. To improve the understanding of how anatomy education influences medical student professional development, the cross-sectional and longitudinal impacts of donor dissection on medical students' perceptions of ethics were explored. A cross-sectional and longitudinal qualitative study was undertaken at an Australian university where student responses to online discussion forums and in-person interviews were analyzed. Data were collected across the 1.5 years that undergraduate medical students received anatomy instruction (three semesters during first and second years). A total of 207 students participated in the online discussion forums, yielding 51,024 words; 24 students participated in at least 1 of 11 interviews, yielding over 11 hours of interview data. Framework analysis identified five themes related to ethics in an anatomical education context: (1) Dignity, (2) Beneficence, (3) Consent, (4) Justification for versus the necessity of dissection, and (5) Dichotomy of objectification and personification. The dominant themes of students' ethical perceptions changed with time, with a shift from focusing on donors as people, toward the utility of donors in anatomy education. Additionally, themes varied by student demographics including gender, ancestry, and religiosity. Together this study suggests a strong impact of donor dissection on priming students' focus on medical ethics and provides further advocacy for formal and purposeful integration of medical ethics with anatomy education.  相似文献   

9.
The most effective method to teach gross anatomy is largely unknown. This study examined two teaching methods utilized in a physical therapy and occupational therapy gross anatomy course, (1) alternating dissection with peer teaching every other laboratory session and (2) faculty demonstrations during laboratory sessions. Student (n = 57) subgroup (A or B) academic performance was determined using written, laboratory practical, and palpation practical examinations. Subgroup A performed significantly better on laboratory practical examination questions pertaining to dissected, in comparison to peer-taught structures (67.1% vs. 60.2%, P = 0.008). Subgroup B performed significantly better on laboratory practical examination questions pertaining to peer-taught, in comparison to dissected structures (64.1% vs. 57.9%, = 0.001). When Subgroup A was compared to Subgroup B, there were no statistically significant differences on laboratory practical examination question types, whether the subgroup learned the structure through dissection or peer teaching. Based on within and between subgroup comparisons, faculty demonstrations had no effect on written, laboratory practical, or palpation practical examination scores. Although limited, data suggest that the student roles when alternating dissection with peer teaching every other laboratory session appear to be equally effective for learning gross anatomy. The benefits of this method include decreased student/faculty ratio in laboratory sessions and increased time for independent study. Faculty demonstrations during laboratory sessions do not seem to improve student academic performance.  相似文献   

10.
Anatomy instruction has evolved over the past two decades as many medical schools have undergone various types of curricular reform. To provide empirical evidence about whether or not curricular changes impact the acquisition and retention of anatomy knowledge, this study investigated the effect of variation in gross anatomy course hours, curricular approach (stand‐alone versus integrated), and laboratory experience (dissection versus dissection and prosection) on USMLE Steps 1 and 2 Clinical Knowledge (CK) scores. Gross anatomy course directors at 54 United States schools provided information about their gross anatomy courses via an online survey (response rate of 42%). Survey responses were matched with USMLE scores for 6,411 examinees entering LCME‐accredited schools in 2007 and taking Step 1 for the first time in 2009. Regression analyses were conducted to examine relationships between gross anatomy instructional characteristics and USMLE performance. Step 1 total scores, Step 1 gross anatomy sub‐scores, and Step 2 CK scores were unrelated to instructional hours, controlling for MCAT scores. Examinees from schools with integrated curricula scored slightly lower on Steps 1 and 2 CK than those from stand‐alone courses (effect sizes of 2.1 and 1.9 on score scales with SDs of 22 and 20, respectively). Examinees with dissection and prosection experience performed slightly better on Step 2 CK than examinees in courses with dissection only laboratories (effect size of 1.2). Results suggest variation in course hours is unrelated to performance on Steps 1 and 2 CK. Although differences were observed in relation to curricular approach and laboratory experience, effect sizes were small. Anat Sci Educ 6: 3–10. © 2012 American Association of Anatomists.  相似文献   

11.
The role of human dissection in modern medical curricula has been a topic of intense debate. In part, this is because dissection can be time-consuming and curricular hours are being monitored more carefully. This has led some to question the efficacy and importance of dissection as a teaching method. While this topic has received considerable attention in the literature, the question of how dissection impacts learning has been difficult to evaluate in a real-world, high-stakes setting since participation in dissection is often one of many variables. In this study, this challenge was overcome due to a change in the curriculum of a Special Master Program (SMP) that permitted a comparison between two years of students that learned anatomy using prosection only and two years of students that participated in dissection laboratories. Since each class of SMP students took courses in the medical school, and the medical school anatomy curriculum was constant, medical student performance served as a control throughout the study period. Results demonstrate that SMP students who learned through prosection had lower performance on anatomy practical and written examinations compared to medical students. When the SMP program changed and students started participating in dissection, there were measurable improvements in both practical and written examinations. These findings provide evidence of dissection’s role in learning and applying anatomy knowledge both within and outside the gross anatomy laboratory.  相似文献   

12.
Dissection videos are commonly utilized in gross anatomy courses; however, the actual usage of such videos, as well as the academic impact of student use of these videos, is largely unknown. Understanding how dissection videos impact learning is important in making curricular decisions. In this study, 22 dissection videos were created to review structures identified in laboratory sessions throughout the Organ Systems 1 (OS1), 2 (OS2), and 3 (OS3) courses. Dissection videos were provided to 201 first-year medical students, and viewing data were recorded. Demographic data for age and gender identity were also collected from students. Overall, there was a significant decrease in total views (P = 0.001), the number of students who pressed play (P < 0.001), and the number of students who viewed ≥ 90% of the total length of videos (P < 0.001) from OS1 to OS3. The total adjusted time spent viewing videos was not significantly different between individual OS courses. There were some instances where significant differences existed in examination performance between those who did and did not view videos, and by time spent viewing videos. There were no significant differences in time spent viewing videos by gender. Together these data suggest that students may utilize dissection videos more at the beginning of a dissection course, although they remain an important resource throughout the year for a subset of students.  相似文献   

13.
Much research has shown the benefits of additional anatomical learning and dissection beyond the first year of medical school human gross anatomy, all the way through postgraduate medical training. We have developed an interactive method for teaching eye and orbit anatomy to medical students in their ophthalmology rotation at Duke University School of Medicine. We provide review lectures on the detailed anatomy of the adult human eye and orbit as well as the developmental anatomy of the eye. These lectures are followed by a demonstration of the anatomy of the orbit using conventional frontal and superior exposures on a prosected human cadaver. The anatomy is projected onto a large LCD screen using a mounted overhead camera. Following a brief lecture on clinically relevant anatomy, each student then dissects a fresh porcine (pig) eye under low magnification using a dissecting microscope. These dissections serve to identify structures extrinsic to the eyeball, including extraocular muscle attachments, small vessels, optic nerve stalk, and fascial sheath of the eyeball (Tenon's fascia). Dissection then shifts to the internal anatomy of the eyeball. The size and anatomy of the porcine eye is comparable with that of the human and the dissection provides students with a valuable hands‐on learning opportunity that is otherwise not available in embalmed human cadavers. Students and clinical faculty feedback reveal high levels of satisfaction with the presentation of anatomy and its scheduling early during the ophthalmology clerkship. Anat Sci Educ 2:173–178, 2009. © 2009 American Association of Anatomists.  相似文献   

14.
15.
An innovative series of dissections of the canine abdomen was created to facilitate social distancing in the dissection room following COVID-19 restrictions imposed in the UK. In groups of six, first-year veterinary students took turns dissecting selected parts of the canine abdomen while maintaining social distancing and documenting their work with video and photographs. Here, students learned about the canine abdominal anatomy by dissecting, recording the dissections of others in their group, and compiling the recorded material into a collaborative electronic media portfolio (Wiki). An online formative multiple-choice test was created to test students' knowledge of the canine abdominal anatomy. The result analysis showed that although students achieved the learning outcomes only by studying the Wiki, they had better performance in the anatomical areas where they learned through the dissection (p < 0.05). Student performance was very similar in the areas in which they were present in the dissection room and participated in recording the dissection compared with the areas that they effectively dissected (p > 0.05). A qualitative thematic analysis was developed to understand students' opinions via their feedback on this dissection approach. Our results showed that student collaboration and the development of practical skills were the most valued aspects of this dissection teaching initiative. Moreover, these results show that developing a group Wiki has a positive impact on student achievement of learning objectives, with a practical hands-on dissection being fundamental for the optimal learning of the canine abdominal anatomy.  相似文献   

16.
Self‐efficacy is defined as a person's beliefs in his or her own abilities to successfully complete a task and has been shown to influence student motivation and academic behaviors. More specifically, anatomical self‐efficacy is defined as an individual's judgment of his or her ability to successfully complete tasks related to the anatomy curriculum; these include dissecting, learning anatomical concepts, and applying anatomical knowledge to clinical situations. The purpose of this study was to investigate the influence of anatomical self‐efficacy on the academic performance of students enrolled in a medical gross anatomy course. To obtain students' anatomical self‐efficacy ratings, surveys containing the same anatomical self‐efficacy instrument were completed by first‐year medical students at a southeastern United States allopathic medical school after each of four gross anatomy assessments. Additional data collected included student demographic information, Medical College Admission Test® (MCAT®) scores, and anatomy assessment scores, both written examination and laboratory practical. To investigate the potential predictive nature of self‐efficacy for academic performance on both the written examination and the laboratory practical components of medical anatomy assessments, hierarchical linear regression analyses were conducted. For these analyses, academic ability (defined as the sum of the physical sciences and biological sciences MCAT scores) was controlled. The results of the hierarchical linear regressions indicated that all four laboratory practical scores were predicted by the corresponding self‐efficacy ratings, while two (i.e., thorax/abdomen and pelvis/lower limb) of the four written examination scores were predicted by the corresponding self‐efficacy ratings (P ≤ 0.05). Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

17.
The purpose of this study was to evaluate the extracurricular cadaveric dissection program available to medical students at an institution with a modern (time‐compressed, student‐centered, and prosection‐based) approach to medical anatomy education. Quantitative (Likert‐style questions) and qualitative data (thematic analysis of open‐ended commentary) were collated from a survey of three medical student cohorts who had completed preclerkship. Perceived benefits of dissection included the hands‐on learning style and the development of anatomy expertise, while the main barrier that limited participation was the time‐intensive nature of dissection. Despite perceived benefits, students preferred that dissection remain optional. Analysis of assessments for the MD2016 cohort revealed that dissection participation was associated with enhanced performance on anatomy items in each systems‐based unit examination, with the largest benefits observed on discriminating items that assessed knowledge application. In conclusion, this study revealed that there are academic and perceived benefits of extracurricular participation in dissection. While millennial medical students recognized these benefits, these students also indicated strong preference for having flexibility and choice in their anatomy education, including the choice to participate in cadaveric dissection. Anat Sci Educ 11: 294–302. © 2017 American Association of Anatomists.  相似文献   

18.
The professional behavior of future doctors is increasingly important in medical education. One of the first subjects in the curriculum to address this issue is gross anatomy. The Tuebingen Medical Faculty implemented a learning portfolio and a seminar on medical professionalism during the dissection course. The aims of this research project are to get an overview of how students form a professional identity in the dissection course and to compare the content of both their oral and written reflections on the course. A qualitative analysis was conducted of the oral and written reflections on the dissection laboratory experience. This study was conducted during winter term 2013/2014 with a cohort of 163 participants in the regular dissection course. Written reflection texts (from n = 96 students) and audio recordings from four oral reflection seminar discussions (with n = 11 students) were transcribed and deductively categorized with Mayring’s qualitative content analysis method. Both qualitative analyses show that students reflected on many topics relevant to professional development, including empathy, respect, altruism, compassion, teamwork, and self-regulation. Quantitative analysis reveals that students who attended the oral reflection wrote significantly more in their written reflection than students who did not. There is, however, no difference in the reflection categories. Reflection content from students corresponds with categories derived from existing competency frameworks. Both the seminar (oral reflections) and the learning portfolio (written reflections) present excellent opportunities to foster professional development during anatomy education; the key is using them in conjunction with the dissection course.  相似文献   

19.
While debate about the use of—and alternatives to—human cadaveric dissection in medical training is robust, little attention has been paid to questions about timing. This study explores the perspectives of medical students and recent graduates with regard to two key questions: when in the degree program do students prefer dissection opportunities and what are the students getting out of participating in dissection? Self-report survey data from students in preclinical years (n = 105), clinical years (n = 57), and graduates (n = 13) were analyzed. Most (89%) preferred dissection during the preclinical years, with no effect by training year (χ2 = 1.98, p = 0.16), previous anatomy (χ2 = 3.64, p = 0.31), or dissection (χ2 = 3.84, p = 0.26) experience. Three key findings emerged. First, the majority of students prefer to dissect in the preclinical years because they view dissection as important for developing foundation knowledge and delivering an opportunity for consolidation prior to transitioning to primarily clinical studies. In addition, students recognize that it is a time-consuming activity requiring specialized facilities. Second, three main understandings of the purpose of dissection were reported: depth of learning, learning experience, and real-world equivalence. Third, these student perspectives of the purpose of dissection are associated with timing preferences for dissection opportunities. The results identify the preclinical phase as the optimal time to strategically integrate dissection into medical training in order to maximize the benefits of this unique learning opportunity for students and minimize its impact upon curricular time.  相似文献   

20.
Dissection is a unique multisensory educational experience and is essential to learning the anatomical construction of the human and animal bodies. This study aims to introduce a specialized design for the assessment of dissection and to discuss the assessment's attributes. The design was a product of the “assessment drives learning” concept and was developed to motivate students to dissect. Students were awarded “dissection points” based on prior group dissection and identification of structures. Students' perception of the design was examined, and content analysis was performed. The assessment consisted of two parts: the first assigning each student group structures to “pin” on their previously dissected cadavers; the second was a group peer evaluation. The most critical factor for the assessment's success was careful selection of structures assigned to students to pin. The assessment was fit for the purpose, valid, reliable, and had a significant educational impact. Eighty-three percent of students (n = 116) recommended maintaining the assessment design, as they felt it promoted a deep approach to learning as well as teamwork while reducing stress to a minimum. A strong correlation (Spearman's rho = 0.46, P < 0.0001) was present between the high rating of the design and the number of structures learned, as well as, high rating and lower stress level (Spearman's rho = 0.40, P < 0.0001). There was no apparent influence of grades on student perception of the effectiveness of the assessment. This specific design of evaluation could be used as part of anatomy education in veterinary and medical schools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号