首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Ultrasound (US) can enhance anatomy education, yet is incorporated into few non‐medical anatomy programs. This study is the first to evaluate the impact of US training in gross anatomy for non‐medical students in the United States. All 32 master's students enrolled in gross anatomy with the anatomy‐centered ultrasound (ACUS) curriculum were recruited. Mean Likert ratings on pre‐ and post‐course surveys (100% response rates) were compared to evaluate the effectiveness of the ACUS curriculum in developing US confidence, and gauge its impact on views of US. Post‐course, students reported significantly higher (P < 0.001) mean confidence ratings in five US skills (pre‐course versus post‐course mean): obtaining scans (3.13 ±1.04 versus 4.03 ±0.78), optimizing images (2.78 ±1.07 versus 3.75 ±0.92), recognizing artifacts (2.94 ±0.95 versus 3.97 ±0.69), distinguishing tissue types (2.88 ±0.98 versus 4.09 ±0.69), and identifying structures (2.97 ±0.86 versus 4.03 ±0.59), demonstrating the success of the ACUS curriculum in students with limited prior experience. Views on the value of US to anatomy education and to students' future careers remained positive after the course. End‐of‐semester quiz performance (91% response rate) provided data on educational outcomes. The average score was 79%, with a 90% average on questions about distinguishing tissues/artifacts, demonstrating positive learning outcomes and retention. The anatomy‐centered ultrasound curriculum significantly increased confidence with and knowledge of US among non‐medical anatomy students with limited prior training. Non‐medical students greatly value the contributions that US makes to anatomy education and to their future careers. It is feasible to enhance anatomy education outside of medical training by incorporating US. Anat Sci Educ 10: 348–362. © 2016 American Association of Anatomists.  相似文献   

2.
This study describes a new teaching model for ultrasound (US) training, and evaluates its effect on medical student attitudes toward US. First year medical students participated in hands‐on US during human gross anatomy (2014 N = 183; 2015 N = 182). The sessions were facilitated by clinicians alone in 2014, and by anatomy teaching assistant (TA)‐clinician pairs in 2015. Both cohorts completed course evaluations which included five US‐related items on a four‐point scale; cohort responses were compared using Mann‐Whitney U tests with significance threshold set at 0.05. The 2015 survey also evaluated the TAs (three items, five‐point scale). With the adoption of the TA‐clinician teaching model, student ratings increased significantly for four out of five US‐items: “US advanced my ability to learn anatomy” increased from 2.91 ± 0.77 to 3.35 ± 0.68 (P < 0.0001), “Incorporating US increased my interest in anatomy” from 3.05 ± 0.84 to 3.50 ± 0.71 (P < 0.0001), “US is relevant to my current educational needs” from 3.36 ± 0.63 to 3.54 ± 0.53 (P = 0.015), and “US training should start in Phase I” from 3.36 ± 0.71 to 3.56 ± 0.59 (P = 0.010). Moreover, more than 84% of students reported that TAs enhanced their understanding of anatomy (mean 4.18 ± 0.86), were a valuable part of US training (mean 4.23 ± 0.89), and deemed the TAs proficient in US (mean 4.24 ± 0.86). By using an anatomy TA‐clinician teaching team, this study demonstrated significant improvements in student perceptions of the impact of US on anatomy education and the relevancy of US training to the early stages of medical education. Anat Sci Educ 11: 175–184. © 2017 American Association of Anatomists.  相似文献   

3.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

4.
Many medical schools have undergone curricular reform recently. With these reforms, time spent teaching anatomy has been reduced, and there has been a general shift to a pass/fail grading system. At Indiana University School of Medicine (IUSM), a new curriculum was implemented in fall 2016. The year-long human gross anatomy course taught in 2015 was condensed into an integrated, semester-long course starting in 2016. Additionally, the grading scale shifted to pass/fail. This study examined first-year medical student performance on anatomy practical laboratory examinations—specifically, among lower-order (pure identification) questions and higher-order (function, innervation) questions. Participants included medical students from a pre-curricular reform cohort (year 2015, 34 students) and two post-curricular reform cohorts (years 2016, 30 students and 2017, 33 students). A Kruskal–Wallis ANOVA test was used to determine differences of these questions among the three cohorts. Additionally, 40 of the same lower-order questions that were asked on gross anatomy laboratory examinations from medical student cohort year 2015 and year 2016 were further analyzed using an independent samples t-test. Results demonstrated that the pre-curricular reform cohort scored significantly higher on both lower-order (median = 81, p < 0.001) and higher-order questions (median = 82.5, p < 0.05) than both post-curricular reform cohorts. Additionally, when reviewing the selected 40 similar questions, it was found that the pre-curricular reform cohort averaged significantly higher (82.1 ± 16.1) than the post-curricular reform cohort from 2016 (69.3 ± 21.8, p = 0.004). This study provides evidence about the impact of curricular reform on medical student anatomical knowledge.  相似文献   

5.
As point-of-care ultrasound (POCUS) invades medical specialties, more students covet earlier ultrasound (US) training programs in medical school. Determining the optimal placement and format in the curriculum remains a challenge. This study uses student perceptions and confidence in interpreting and acquiring images to evaluate the effectiveness of an US curriculum and assesses their performance on US content. A unique US curriculum was incorporated into first-year clinical anatomy at Tufts University School of Medicine (TUSM). Students completed surveys evaluating changes in US confidence and perceptions. Mean ratings on pre- and post-surveys were compared using Mann–Whitney U tests. Performance on US examination questions was evaluated. Two independent evaluators coded narrative responses and NVivo software was used to identify common themes. Two hundred eleven students completed the US curriculum. Students reported higher post-curriculum mean confidence ratings on US comprehension, operation, image acquisition, artifact recognition, and normal image interpretation (P < 0.0001). US reinforced anatomy concepts and clinical correlates (9.56, ±0.97 SD; 9.60, ±1.05). Students disagreed with items stating learning US is too difficult (1.2, ±2.2) and that it interferes with learning anatomy (0.68, ±1.7). Students scored above passing on practical US knowledge questions, supporting survey data, and the relation to learning spatial relationships. Qualitative analysis identified seven major themes and additional subthemes. Limited integration of US breaks barriers in students' perceptions and confidence in performing POCUS. The TUSM US curriculum is a natural marriage of anatomy and POCUS applications, serving as a template for medical schools.  相似文献   

6.
Integration of medical imaging into preclinical anatomy courses is already underway in many medical schools. However, interpretation of two-dimensional grayscale images is difficult and conventional volume rendering techniques provide only images of limited quality. In this regard, a more photorealistic visualization provided by Cinematic Rendering (CR) may be more suitable for anatomical education. A randomized, two-period crossover study was conducted from July to December 2018, at the University Hospital of Erlangen, Germany to compare CR and conventional computed tomography (CT) imaging for speed and comprehension of anatomy. Sixteen students were randomized into two assessment sequences. During each assessment period, participants had to answer 15 anatomy-related questions that were divided into three categories: parenchymal, musculoskeletal, and vascular anatomy. After a washout period of 14 days, assessments were crossed over to the respective second reconstruction technique. The mean interperiod differences for the time to answer differed significantly between the CR–CT sequence (−204.21 ± 156.0 seconds) and the CT–CR sequence (243.33 ± 113.83 seconds; P < 0.001). Overall time reduction by CR was 65.56%. Cinematic Rendering visualization of musculoskeletal and vascular anatomy was higher rated compared to CT visualization (P < 0.001 and P = 0.003), whereas CT visualization of parenchymal anatomy received a higher scoring than CR visualization (P < 0.001). No carryover effects were observed. A questionnaire revealed that students consider CR to be beneficial for medical education. These results suggest that CR has a potential to enhance knowledge acquisition and transfer from medical imaging data in medical education.  相似文献   

7.
Knowledge of embryology is foundational for understanding normal anatomy and birth defects, yet, embryology is a notoriously difficult subject for medical students. Embryonic lateral folding in particular is one of the most challenging concepts in embryology. Highly effective teaching methods that promote active engagement with dynamic, three-dimensional models may be helpful for teaching this content. The aim of this study was to determine whether a hands-on modeling activity utilizing premade crocheted pieces constructed from durable, inexpensive yarn helped medical students enrolled in a pre-matriculation course to understand embryonic lateral folding. Change in knowledge was assessed using a pre–post design. Students also completed subjective evaluations regarding their satisfaction with the activity. Quiz scores in means (±SD) increased from 62.7 (±24.1) % before the activity to 77.0 (±17.1) % after the activity (P = 0.0495, two-tailed paired t test; d = 0.68). Generally, students reported that the activity was helpful and enjoyable, and the model pieces were easy to manipulate. These promising results suggest that hands-on activities with dynamic, three-dimensional models constitute an effective method for teaching embryology.  相似文献   

8.
Scientific competencies, as defined in the German competency framework, describe the ability to think independently and act scientifically which is a central component of medical education. This report describes integration of scientific competencies into anatomical teaching. Based on findings seen in two consecutive years of dissection courses, students worked on either a case report (n = 70) or an original research study (n = 6) in the format of a scientific poster while learning to use primary literature. Posters were evaluated by juror teams using standardized evaluation criteria. Student perception of the project was assessed by quantitative and qualitative data obtained from the faculty's course evaluation and an online-survey. Overall, students worked collaboratively and invested extra-time (median 3.0 hours) in poster creation. Primary literature was integrated in 90.8% of the posters. Overall poster quality was satisfactory (46.3 ± 8.5 [mean ± standard deviation] out of 72 points), but several insufficiencies were identified. Students integrated information gained from the donor's death certificate, post-mortem full-body computed tomography (CT) scan (22.4%), and histopathological workup (31.6%) in their case reports. Students responded positively about learning new scientific skills (median 4.0 on a six-point Likert scale), but free-text answers revealed that some students experienced the project as an extra burden in a demanding gross anatomy course. In summary, it was feasible to introduce students to scientific skills during the dissection course and to increase interest in science in approximately a third of the survey respondents. Further adjustments to ensure the posters' scientific quality might be necessary for the future.  相似文献   

9.
The presentation of pre-sliced specimens is a frequently used method in the laboratory teaching of cross-sectional anatomy. In the present study, a new teaching method based on a hands-on slicing activity was introduced into the teaching of brain, heart, and liver cross-sectional anatomy. A randomized, controlled trial was performed. A total of 182 third-year medical students were randomized into a control group taught with the prosection mode (pre-sliced organ viewing) and an experimental group taught with the dissection mode (hands-on organ slicing). These teaching methods were assessed by testing the students' knowledge of cross-sectional specimens and cross-sectional radiological images, and analyzing students' feedback. Using a specimen test on three organs (brain, heart, and liver), significant differences were observed in the mean scores of the control and experimental groups: for brain 59.6% (±14.2) vs. 70.1% (±15.5), (P < 0.001, Cohen's d = 0.17); for heart: 57.6% (±12.5) vs. 75.6% (±15.3), (P < 0.001, d = 0.30); and for liver: 60.4% (±14.5) vs. 81.7% (±14.2), (P < 0.001, d = 0.46). In a cross-sectional radiological image test, better performance was also found in the experimental group (P < 0.001). The mean scores of the control vs. experimental groups were as follows: for brain imaging 63.9% (±15.1) vs. 71.1% (±16.1); for heart imaging 64.7% (±14.5) vs. 75.2% (±15.5); and for liver imaging 61.1% (±15.5) vs. 81.2% (±14.6), respectively. The effect sizes (Cohen's d) were 0.05, 0.23, and 0.52, respectively. Students in the lower tertile benefited the most from the slicing experiences. Students' feedback was generally positive. Hands-on slicing activity can increase the effectiveness of anatomy teaching and increase students' ability to interpret radiological images.  相似文献   

10.
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience.  相似文献   

11.
Game-based learning can have a positive impact on medical education, and virtual worlds have great potential for supporting immersive online games. It is necessary to reinforce current medical students' knowledge about radiological anatomy and radiological signs. To meet this need, the objectives of this study were: to design a competition-based game in the virtual world, Second Life and to analyze the students' perceptions of Second Life and the game, as well as to analyze the medium-term retention of knowledge and the potential impact on the final grades. Ninety out of 197 (45.6%) third-year medical students voluntarily participated in an online game based on self-guided presentations and multiple-choice tests over six 6-day stages. Participants and non-participants were invited to perform an evaluation questionnaire about the experience and a post-exposure knowledge test. Participants rated the experience with mean scores equal to or higher than 8.1 on a 10-point scale, highlighting the professor (9.5 ± 1.1; mean ± SD) and the virtual environment (8.9 ± 1.1). Participants had better results in the post-exposure test than non-participants (59.0 ± 13.5 versus 45.3 ± 11.5; P < 0.001) and a lower percentage of answers left blank (6.7 ± 8.4 versus 13.1 ± 12.9; P = 0.014). Competitive game-based learning within Second Life is an effective and well-accepted means of teaching core radiological anatomy and radiological signs content to medical students. The higher medium-term outcomes obtained by participants may indicate effective learning with the game. Additionally, valuable positive perceptions about the game, the educational contents, and the potential benefit for their education were discovered among non-participants.  相似文献   

12.
Self‐efficacy is defined as a person's beliefs in his or her own abilities to successfully complete a task and has been shown to influence student motivation and academic behaviors. More specifically, anatomical self‐efficacy is defined as an individual's judgment of his or her ability to successfully complete tasks related to the anatomy curriculum; these include dissecting, learning anatomical concepts, and applying anatomical knowledge to clinical situations. The purpose of this study was to investigate the influence of anatomical self‐efficacy on the academic performance of students enrolled in a medical gross anatomy course. To obtain students' anatomical self‐efficacy ratings, surveys containing the same anatomical self‐efficacy instrument were completed by first‐year medical students at a southeastern United States allopathic medical school after each of four gross anatomy assessments. Additional data collected included student demographic information, Medical College Admission Test® (MCAT®) scores, and anatomy assessment scores, both written examination and laboratory practical. To investigate the potential predictive nature of self‐efficacy for academic performance on both the written examination and the laboratory practical components of medical anatomy assessments, hierarchical linear regression analyses were conducted. For these analyses, academic ability (defined as the sum of the physical sciences and biological sciences MCAT scores) was controlled. The results of the hierarchical linear regressions indicated that all four laboratory practical scores were predicted by the corresponding self‐efficacy ratings, while two (i.e., thorax/abdomen and pelvis/lower limb) of the four written examination scores were predicted by the corresponding self‐efficacy ratings (P ≤ 0.05). Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

13.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

14.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

15.
The Radboud University Medical Center has a problem‐based, learner‐oriented, horizontally, and vertically integrated medical curriculum. Anatomists and clinicians have noticed students’ decreasing anatomical knowledge and the disability to apply knowledge in diagnostic reasoning and problem solving. In a longitudinal cohort, the retention of anatomical knowledge gained during the first year of medical school among second‐year medical students was assessed. In May 2011, 346 medical students applied for the second‐year gastro‐intestinal (GI) tract course. The students were asked to participate in a reexamination of a selection of anatomical questions of an examination from October 2009. The examination consisted of a clinical anatomy case scenario and two computed tomography (CT) images of thorax and abdomen in an extended matching format. A total of 165 students were included for analysis. In 2011, students scored significantly lower for the anatomy examination compared to 2009 with a decline in overall examination score of 14.7% (±11.7%). Decrease in knowledge was higher in the radiological questions, compared to the clinical anatomy cases 17.5% (±13.6%) vs. 7.9% (±10.0%), respectively, d = 5.17. In both years, male students scored slightly better compared to female students, and decline of knowledge seems somewhat lower in male students (13.1% (±11.1%) vs. 15.5% (±12.0%), respectively), d = ?0.21. Anatomical knowledge in the problem‐oriented horizontal and vertical integrated medical curriculum, declined by approximately 15% 1.5 year after the initial anatomy course. The loss of knowledge in the present study is relative small compared to previous studies. Anat Sci Educ 10: 242–248. © 2016 American Association of Anatomists.  相似文献   

16.
The clinical use of ultrasound has dramatically increased, necessitating early ultrasound education and the development of new tools in ultrasound training and assessment. The goal of this study was to devise a novel low-resource examination that tested the anatomical knowledge and technical skill of early undergraduate medical students in a gross anatomy course. The team-based ultrasound objective structured practice examination (OSPE) was created as a method for assessing practical ultrasound competencies, anatomical knowledge, and non-technical skills such as teamwork and professionalism. The examination utilized a rotation of students through four team roles as they scanned different areas of the body. This station-based examination required four models and four instructors, and tested ultrasound skills in the heart, abdominal vessels, abdominal organs, and neck regions. A Likert scale survey assessed student attitudes toward the examination. Survey data from participants (n = 46) were examined along with OSPE examination grades (n = 52). Mean and standard deviations were calculated for examination items and survey responses. Student grades were high in both technical (96.5%). and professional (96.5%) competencies with structure identification scoring the lowest (93.8%). There were no statistical differences between performances in each of the body regions being scanned. The survey showed that students deemed the examination to be fair and effective. In addition, students agreed that the examination motivated them to practice ultrasound. The team-based OSPE was found to be an efficient and student-favored method for evaluating integrated ultrasound competencies, anatomical knowledge, team-work, and professional attributes.  相似文献   

17.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

18.
Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross anatomy in favor of applied clinical work. The release of virtual (VR) and augmented reality (AR) devices allows learning to occur through hands‐on immersive experiences. The aim of this research was to assess whether learning structural anatomy utilizing VR or AR is as effective as tablet‐based (TB) applications, and whether these modes allowed enhanced student learning, engagement and performance. Participants (n = 59) were randomly allocated to one of the three learning modes: VR, AR, or TB and completed a lesson on skull anatomy, after which they completed an anatomical knowledge assessment. Student perceptions of each learning mode and any adverse effects experienced were recorded. No significant differences were found between mean assessment scores in VR, AR, or TB. During the lessons however, VR participants were more likely to exhibit adverse effects such as headaches (25% in VR P < 0.05), dizziness (40% in VR, P < 0.001), or blurred vision (35% in VR, P < 0.01). Both VR and AR are as valuable for teaching anatomy as tablet devices, but also promote intrinsic benefits such as increased learner immersion and engagement. These outcomes show great promise for the effective use of virtual and augmented reality as means to supplement lesson content in anatomical education. Anat Sci Educ 10: 549–559. © 2017 American Association of Anatomists.  相似文献   

19.
Anatomy is a key knowledge area in chiropractic and is formally offered in the undergraduate component of chiropractic education. There is the potential for loss of anatomy knowledge before the opportunity to apply it in a clinical setting. This study aimed to determine whether chiropractic clinicians retain a level of anatomy knowledge comparable to that of chiropractic students and to compare chiropractors' self-rating of their anatomical knowledge against an objective knowledge assessment tool. A previously validated multiple-choice test was utilized to measure retention of limb musculoskeletal (MSK) knowledge in Australian chiropractors. One hundred and one registered chiropractors completed the questionnaire and responses were scored, analyzed, and compared to scores attained by undergraduate and postgraduate chiropractic students who had previously completed the same questionnaire. The results indicated that practitioners retained their anatomy knowledge, with a significantly higher total mean score than the undergraduate group [total mean score = 36.5% (±SD 13.6%); P < 0.01] but not significantly different to the postgraduate group [total mean score = 52.2% (±SD 14.1%); P = 0.74]. There was a weak positive correlation between chiropractors' self-rated knowledge and test performance scores indicating the effectiveness of this Australian chiropractic group in self-assessing their anatomy knowledge. This study found that Australian chiropractors' knowledge of MSK anatomy was retained during the transition from university to clinical practice and they accurately evaluated their own test performance.  相似文献   

20.
Visual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities. Course participants (n = 45) and controls (n = 65) were first and second-year medical undergraduates who performed a Mental Rotations Test (MRT) before and 10 weeks after the course. At baseline, there was no significant difference in MRT scores between course participants and controls. At the end of the course, participants achieved a greater improvement than controls (first-year: ∆6.0 ± 4.1 vs. ∆4.9 ± 3.2; ANCOVA, P = 0.019, Cohen's d = 0.41; second-year: ∆6.5 ± 3.3 vs. ∆6.1 ± 4.0; P = 0.03, Cohen's d = 0.11). Individuals with initially lower scores on the MRT pretest showed the largest improvement (∆8.4 ± 2.3 vs. ∆6.8 ± 2.8; P = 0.011, Cohen's d = 0.61). In summary, (1) an anatomy dissection course improved visual-spatial abilities of medical undergraduates; (2) a substantial improvement was observed in individuals with initially lower scores on the visual-spatial abilities test indicating a different trajectory of improvement; (3) students' preferences for attending extracurricular anatomy dissection course was not driven by visual-spatial abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号