首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Liu Y  Hartono D  Lim KM 《Biomicrofluidics》2012,6(1):12802-1280214
This paper presents a two-stream microfluidic system for transporting cells or micro-sized particles from one fluid stream to another by acoustophoresis. The two fluid streams, one being the original suspension and the other being the destination fluid, flow parallel to each other in a microchannel. Using a half-wave acoustic standing wave across the channel width, cells or particles with positive acoustic contrast factors are moved to the destination fluid where the pressure nodal line lies. By controlling the relative flow rate of the two fluid streams, the pressure nodal line can be maintained at a specific offset from the fluid interface within the destination fluid. Using this transportation method, particles or cells of different sizes and mechanical properties can be separated. The cells experiencing a larger acoustic radiation force are separated and transported from the original suspension to the destination fluid stream. The other particles or cells experiencing a smaller acoustic radiation force continue flowing in the original solution. Experiments were conducted to demonstrate the effective separation of polystyrene microbeads of different sizes (3 μm and 10 μm) and waterborne parasites (Giardia lamblia and Cryptosporidium parvum). Diffusion occurs between the two miscible fluids, but it was found to have little effects on the transport and separation process, even when the two fluids have different density and speed of sound.  相似文献   

2.
Wang C  Jalikop SV  Hilgenfeldt S 《Biomicrofluidics》2012,6(1):12801-1280111
Oscillating microbubbles of radius 20–100 μm driven by ultrasound initiate a steady streaming flow around the bubbles. In such flows, microparticles of even smaller sizes (radius 1–5 μm) exhibit size-dependent behaviors: particles of different sizes follow different characteristic trajectories despite density-matching. Adjusting the relative strengths of the streaming flow and a superimposed Poiseuille flow allows for a simple tuning of particle behavior, separating the trajectories of particles with a size resolution on the order of 1 μm. Selective trapping, accumulation, and release of particles can be achieved. We show here how to design bubble microfluidic devices that use these concepts to filter, enrich, and preconcentrate particles of selected sizes, either by concentrating them in discrete clusters (localized both stream- and spanwise) or by forcing them into narrow, continuous trajectory bundles of strong spanwise localization.  相似文献   

3.
The mechanical behavior of cells offers insight into many aspects of their properties. We propose an approach to the mechanical analysis of cells that uses a combination of electromanipulation for stimulus and capacitance for sensing. To demonstrate this approach, polystyrene spheres and yeast cells flowing in a 25 μm×100 μm microfluidic channel were detected by a perpendicular pair of gold thin film electrodes in the channel, spaced 25 μm apart. The presence of cells was detected by capacitance changes between the gold electrodes. The capacitance sensor was a resonant coaxial radio frequency cavity (2.3 GHz) coupled to the electrodes. The presence of yeast cells (Saccharomyces cerevisiae) and polystyrene spheres resulted in capacitance changes of approximately 10 and 100 attoFarad (aF), respectively, with an achieved capacitance resolution of less than 2 aF in a 30 Hz bandwidth. The resolution is better than previously reported in the literature, and the capacitance changes are in agreement with values estimated by finite element simulations. Yeast cells were trapped using dielectrophoretic forces by applying a 3 V signal at 1 MHz between the electrodes. After trapping, the cells were displaced using amplitude and frequency modulated voltages to produce modulated dielectrophoretic forces. Repetitive displacement and relaxation of these cells was observed using both capacitance and video microscopy.  相似文献   

4.
In this paper, 3D particle focusing in a straight channel with asymmetrical expansion–contraction cavity arrays (ECCA channel) is achieved by exploiting the dean-flow-coupled elasto-inertial effects. First, the mechanism of particle focusing in both Newtonian and non-Newtonian fluids was introduced. Then particle focusing was demonstrated experimentally in this channel with Newtonian and non-Newtonian fluids using three different sized particles (3.2 μm, 4.8 μm, and 13 μm), respectively. Also, the effects of dean flow (or secondary flow) induced by expansion–contraction cavity arrays were highlighted by comparing the particle distributions in a single straight rectangular channel with that in the ECCA channel. Finally, the influences of flow rates and distances from the inlet on focusing performance in the ECCA channel were studied. The results show that in the ECCA channel particles are focused on the cavity side in Newtonian fluid due to the synthesis effects of inertial and dean-drag force, whereas the particles are focused on the opposite cavity side in non-Newtonian fluid due to the addition of viscoelastic force. Compared with the focusing performance in Newtonian fluid, the particles are more easily and better focused in non-Newtonian fluid. Besides, the Dean flow in visco-elastic fluid in the ECCA channel improves the particle focusing performance compared with that in a straight channel. A further advantage is three-dimensional (3D) particle focusing that in non-Newtonian fluid is realized according to the lateral side view of the channel while only two-dimensional (2D) particle focusing can be achieved in Newtonian fluid. Conclusively, this novel Dean-flow-coupled elasto-inertial microfluidic device could offer a continuous, sheathless, and high throughput (>10 000 s−1) 3D focusing performance, which may be valuable in various applications from high speed flow cytometry to cell counting, sorting, and analysis.  相似文献   

5.
Electro-osmotic flow (EOF) pumps are attractive for fluid manipulation in microfluidic channels. Open channel EOF pumps can produce high pressures and flow rates, and are relatively easy to fabricate on-chip or integrate with other microfluidic or electrical components. An EOF pump design that is conducive to on-chip fabrication consists of multiple small channel arms feeding into a larger flow channel. We have fabricated this type of pump design using a thin film deposition process that avoids wafer bonding. We have evaluated pumps fabricated on both silicon and glass substrates. Consistent flow rate versus electric field were obtained. For the range of 40–400 V, flow rates of 0.19–2.30 μL∕min were measured. Theoretical calculations of pump efficiency were made, as well as calculations of the mechanical power generated by various pump shapes, to investigate design parameters that should improve future pumps.  相似文献   

6.
Studying enzymatic bioreactions in a millisecond microfluidic flow mixer   总被引:1,自引:0,他引:1  
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions.  相似文献   

7.
Field-free particle focusing in microfluidic plugs   总被引:1,自引:0,他引:1  
Kurup GK  Basu AS 《Biomicrofluidics》2012,6(2):22008-2200810
Particle concentration is a key unit operation in biochemical assays. Although there are many techniques for particle concentration in continuous-phase microfluidics, relatively few are available in multiphase (plug-based) microfluidics. Existing approaches generally require external electric or magnetic fields together with charged or magnetized particles. This paper reports a passive technique for particle concentration in water-in-oil plugs which relies on the interaction between particle sedimentation and the recirculating vortices inherent to plug flow in a cylindrical capillary. This interaction can be quantified using the Shields parameter (θ), a dimensionless ratio of a particle’s drag force to its gravitational force, which scales with plug velocity. Three regimes of particle behavior are identified. When θ is less than the movement threshold (region I), particles sediment to the bottom of the plug where the internal vortices subsequently concentrate the particles at the rear of the plug. We demonstrate highly efficient concentration (∼100%) of 38 μm glass beads in 500 μm diameter plugs traveling at velocities up to 5 mm/s. As θ is increased beyond the movement threshold (region II), particles are suspended in well-defined circulation zones which begin at the rear of the plug. The length of the zone scales linearly with plug velocity, and at sufficiently large θ, it spans the length of the plug (region III). A second effect, attributed to the co-rotating vortices at the rear cap, causes particle aggregation in the cap, regardless of flow velocity. Region I is useful for concentrating/collecting particles, while the latter two are useful for mixing the beads with the solution. Therefore, the two key steps of a bead-based assay, concentration and resuspension, can be achieved simply by changing the plug velocity. By exploiting an interaction of sedimentation and recirculation unique to multiphase flow, this simple technique achieves particle concentration without on-chip components, and could therefore be applied to a range of heterogeneous screening assays in discrete nl plugs.  相似文献   

8.
Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new “ upstream inlet ” to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4+ T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.  相似文献   

9.
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.  相似文献   

10.
Lewpiriyawong N  Yang C 《Biomicrofluidics》2012,6(1):12807-128079
The recent development of microfluidic “lab on a chip” devices requires the need to continuously separate submicron particles. Here, we present a PDMS microfluidic device with sidewall conducting PDMS (AgPDMS) composite electrodes capable of separating submicron particles in hydrodynamic flow. In particular, the device can service dual functions. First, the AgPDMS composite electrodes embedded in a sidewall of the device channel allow for performing AC-dielectrophoretic (DEP) characterization through direct microscopic observation of particle behavior. Characterization experiments are carried out for numerous parameters including particle size, medium conductivity, and AC field frequency to reveal important dielectrophoresis DEP information in terms of the crossover frequency and positive/negative DEP behavior under specific frequencies. Second, the device offers an advantage that sidewall AgPDMS composite electrodes can produce strong DEP effects throughout the entire channel height, and thus the robustness of the on-chip particle separation is demonstrated for continuous separation in a flowing mixture of 0.5 and 5 μm particles with 100% separation efficiency.  相似文献   

11.
Electroosmotic flow was studied in thin film microchannels with silicon dioxide and silicon nitride sidewalls formed using plasma-enhanced chemical vapor deposition (PECVD). A sacrificial etching process was employed for channel fabrication allowing for cross-sections with heights of 3 μm, ranging from 2 μm to 50 μm in width. Flow rates were measured for single channels and multichannel electroosmotic pump structures for pH levels ranging from 2.6 to 8.3, and zeta potentials were calculated for both silicon dioxide and silicon nitride surfaces. Flow rates as high as 0.086 μL∕min were measured for nitride multichannel pumps at applied electric fields of 300 V∕mm. The surface characteristics of PECVD nitride were analyzed and compared to more well-known oxide surfaces to determine the density of amine sites compared to silanol sites.  相似文献   

12.
Optical chromatography relies on the balance between the opposing optical and fluid drag forces acting on a particle. A typical configuration involves a loosely focused laser directly counter to the flow of particle-laden fluid passing through a microfluidic device. This equilibrium depends on the intrinsic properties of the particle, including size, shape, and refractive index. As such, uniquely fine separations are possible using this technique. Here, we demonstrate how matching the diameter of a microfluidic flow channel to that of the focusing laser in concert with a unique microfluidic platform can be used as a method to fractionate closely related particles in a mixed sample. This microfluidic network allows for a monodisperse sample of both polystyrene and poly(methyl methacrylate) spheres to be injected, hydrodynamically focused, and completely separated. To test the limit of separation, a mixed polystyrene sample containing two particles varying in diameter by less than 0.5 μm was run in the system. The analysis of the resulting separation sets the framework for continued work to perform ultra-fine separations.  相似文献   

13.
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.  相似文献   

14.
We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of −0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.  相似文献   

15.
Teh SY  Khnouf R  Fan H  Lee AP 《Biomicrofluidics》2011,5(4):44113-4411312
In this paper, we present a microfluidic platform for the continuous generation of stable, monodisperse lipid vesicles 20–110 μm in diameter. Our approach utilizes a microfluidic flow-focusing droplet generation design to control the vesicle size by altering the system’s fluid flow rates to generate vesicles with narrow size distribution. Double emulsions are first produced in consecutive flow-focusing channel geometries and lipid membranes are then formed through a controlled solvent extraction process. Since no strong solvents are used in the process, our method allows for the safe encapsulation and manipulation of an assortment of biological entities, including cells, proteins, and nucleic acids. The vesicles generated by this method are stable and have a shelf life of at least 3 months. Here, we demonstrate the cell-free in vitro synthesis of proteins within lipid vesicles as an initial step towards the development of an artificial cell.  相似文献   

16.
Dielectrophoresis (DEP) has been shown to have significant potential for the characterization of cells and could become an efficient tool for rapid identification and assessment of microorganisms. The present work is focused on the trapping, characterization, and separation of two species of Cryptosporidium (C. parvum and C. muris) and Giardia lambia (G. lambia) using a microfluidic experimental setup. Cryptosporidium oocysts, which are 2-4 μm in size and nearly spherical in shape, are used for the preliminary stage of prototype development and testing. G. lambia cysts are 8–12 μm in size. In order to facilitate effective trapping, simulations were performed to study the effects of buffer conductivity and applied voltage on the flow and cell transport inside the DEP chip. Microscopic experiments were performed using the fabricated device and the real part of Clausius—Mossotti factor of the cells was estimated from critical voltages for particle trapping at the electrodes under steady fluid flow. The dielectric properties of the cell compartments (cytoplasm and membrane) were calculated based on a single shell model of the cells. The separation of C. muris and G. lambia is achieved successfully at a frequency of 10 MHz and a voltage of 3 Vpp (peak to peak voltage).  相似文献   

17.
We have designed, built, and evaluated a microfluidic device that uses deterministic lateral displacement for size-based separation. The device achieves almost 100% purity and recovery in continuously sorting two, four, and six micrometer microspheres. We have applied this highly efficient device to the purification of fungal (Aspergillus) spores that are spherical (∼4 μm diameter) with a narrow size distribution. Such separation directly from culture using unfiltered A. niger suspensions is difficult due to a high level of debris. The device produces a two to three increase in the ratio of spores to debris as measured by light scatter in a flow cytometer. The procedure is feasible at densities up to 4.4×106 spores∕ml. This is one of the first studies to apply microfluidic techniques to spore separations and has demonstrated that a passive separation system could significantly reduce the amount of debris in a suspension of fungal spores with virtually no loss of spore material.  相似文献   

18.
Two microfluidic systems have been developed for specific analysis of L-glutamate in food based on substrate recycling fluorescence detection. L-glutamate dehydrogenase and a novel enzyme, D-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips containing 32 porous flow channels of 235 μm depth and 25 μm width and (ii) polystyrene Poros™ beads with a particle size of 20 μm. The immobilized enzymes recycle L-glutamate by oxidation to 2-oxoglutarate followed by the transfer of an amino group from D-4-hydroxyphenylglycine to 2-oxoglutarate. The reaction was accompanied by reduction of nicotinamide adenine dinucleotide (NAD+) to NADH, which was monitored by fluorescence detection (εex=340 nm, εem=460 nm). First, the microchip-based system, L-glutamate was detected within a range of 3.1–50.0 mM. Second, to be automatically determined, sequential injection analysis (SIA) with the bead-based system was investigated. The bead-based system was evaluated by both flow injection analysis and SIA modes, where good reproducibility for L-glutamate calibrations was obtained (relative standard deviation of 3.3% and 6.6%, respectively). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a pH of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining. The bead-based system demonstrated high selectivity, where L-glutamate recoveries were between 91% and 108% in the presence of six other L-amino acids tested.  相似文献   

19.
A porous silicon (PSi) based microarray has been integrated with a microfluidic system, as a proof of concept device for the optical monitoring of selective label-free DNA-DNA interaction. A 4 × 4 square matrix of PSi one dimensional photonic crystals, each one of 200 μm diameter and spaced by 600 μm, has been sealed by a polydimethylsiloxane (PDMS) channels circuit. The PSi optical microarray elements have been functionalized by DNA single strands after sealing: the microfluidic circuit allows to reduce significantly the biologicals and chemicals consumption, and also the incubation time with respect to a not integrated device. Theoretical calculations, based on finite element method, taking into account molecular interactions, are in good agreement with the experimental results, and the developed numerical model can be used for device optimization. The functionalization process and the interaction between DNA probe and target has been monitored by spectroscopic reflectometry for each PSi element in the microchannels.  相似文献   

20.
We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号