首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
一般而言,对于二次方程ax12+bx1+c=0,ax22+bx2+c=0(a,b,c为常数,且a≠0),其中的x1,x2可看作方程ax2+bx+c=0(a≠0)的两根的前提是x1≠x2,这是因为当x1=x2时,x1与x2并不能完全保证是方程ax2+bx+c=0的两根,此时存在两种可能:  相似文献   

2.
大家知道,如果x1,x2(x1≠x2)是方程ax2 bx c=0(a≠0)的两个根,则有ax12 bx1 C=0,ax22 bx2 c=0. 反之,若ax12 bx1十c=0,ax22 bx2 c=0,x1≠x2,则x1,x2是方程ax2 bx c=0(a≠0)的两个根.  相似文献   

3.
若S是方程ax2+bx+c=0(a≠0)的一个根,则aS2+bS+c=0.这种把根代入原方程的方法叫“根回娘家”.让“根回娘家”解与方程根有关的问题,能收到意想不到的解题效果.  相似文献   

4.
我们知道:若x1是方程ax2+bx+c=0(a≠0)的根,则ax12+bx1+c=0,反之若ax12+bx1+c=0(a≠0),则x1是方程ax2+bx+c=0的一个根,活用方程根的定义的正、反两方面知识,进行解题是一种重要的方法,现举例说明·一、正用方程根的定义例1(“祖冲之杯”数学邀请赛题)已知关于x的方程ax2+bx+c=0(a≠0)的两根之和是m,两根平方和是n,求3an2+c3bm的值·解:设方程的二根是α、β,则aα2+bα+c=0,aβ2+bβ+c=0·两式相加,得a(α2+β2)+b(α+β)+2c=0,即an+bm+2c=0,所以2c=-(an+bm),所以3an2+c3bm=-31·例2(河北省初中数学竞赛题)求作一元二次方程,使它的根是方程x…  相似文献   

5.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

6.
一、延伸知识 1.三次方程的韦达定理:设三次方程ax3+ bx2+cx+d=0(a≠0)的三个根分别是x1,x2,x3,则有: { x1+ x2+x3=-b/a, x1x2+x2x3+x3x1=c/a, x1x2x3=-d/a. 这个定理的证明,只需把式子ax3 +bx2 +cx+d=a(x-x1) (x-x2) (x-x3)展开,比较x的同次项的系数即可. 2.行列式的基本知识.  相似文献   

7.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

8.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

9.
一元二次方程ax2+bx+c=0(a≠0)根的分布问题,实质上是函数 f(x)=ax2+bx+c(a≠0)的零点分布问题,即抛物线与x轴的交点问题.下面从两个视角审视一元二次方程根的分布问题:(1)方程视角(韦达定理法);(2)函数视角(图象法).设一元二次方程ax2+bx+c=0(a≠ 0)的两根为x1、x2,m、n、p、q∈R,则有:  相似文献   

10.
三次函数f(x)=ax3 bx2 cx d(a≠0)已经成为中学阶段一个重要的函数.本文给出并证明三次函数的三个性质,并例说性质的应用.函数f(x)=ax3 bx2 cx d(a≠0)的导函数为f/(x)=3ax2 2bx c.导函数的对应方程为f/(x)=0即3ax2 2bx c=0,其判别式Δ=4(b2-3ac).若Δ>0,设其两根为x1、x2,并设x1相似文献   

11.
构造一元二次方程是一种重要的解题技巧,它可以使一些看似与方程无关的问题,用方程的知识得以简捷地解决.那么,应根据什么来构造一元二次方程呢? 一、利用一元二次方程根的意义我们知道,若x1,x2是方程ax2+bx+c=0(a≠0)的两个根,则有ax12+bx1+c=0、ax22+bx2+c=  相似文献   

12.
如果一元二次方程ax2+bx+c(a≠0)的系数和a+b+c=0,则不难发现:x=1满足方程ax2+bx+c=0,即x=1是该方程的一个根.反之,如果x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,  相似文献   

13.
一元二次方程是初中代数的重要内容,它是一种只含有一个未知数,并且未知数的最高次数是2的整式方程.其一般形式为ax2+bx+c=0(a≠0).学习了一元二次方程根的意义、解法及其根的判别式后,灵活利用它们,可迅速地解答一些竞赛试题.一、灵活利用根的意义若x0是一元二次方程ax2+bx+c=0的根,那么ax_0~2+bx0+c=0,反之,若ax_0~2+bx0+c=0(a≠0),那么x0是一元二次方程ax2+bx+c=0的根.例1 已知a是方程x2-3x+1=0的根,则2a2-5a-2+3/a2+1的值是__.(1996年昆明市初中  相似文献   

14.
在一元二次方程ax2+bx+c=0(a≠0、a、b、c为常数)中,当x=1时,a十b+c=0;反过来,当a+b+c=0时,就有x=1是方程ax2+bx+c=0的一个根. 由此类推到:如果am2+bm+c=0,an2+bn+c=0,且m≠n那么就知道m、n是一元  相似文献   

15.
如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1、x2,那么x1+x2=-b/a,x1x2=c/a,反之,若x1+x2=-b/a,x1x2=c/a则x1和x2是方程ax2+bx+c=0(a≠0)的两个根,这两个性质揭示了方程的根与系数之间的必然联系,故称为根与系数的关系,这个关系是法国数学家韦达首先发现的,通常又叫做韦达定理及其逆定理,这两个定理十分重要,在历年的中考题中应用极为广泛,现分述如下:  相似文献   

16.
在一元二次方程ax2+bx+c=0(a≠0)中,常常隐含着a+b+c=0,此时方程的根究竟有什么特征呢?下面我们来研究这个问题。首先,为了能更清楚地看到方程与系数的关系,我们可以先由a+b+c=0,得b=-(a+c),代入方程消去b,得ax2-(a+c)x+c=0,ax(x-1)-c(x-1)=0,(x-1)(ax-c)=0,哈,原来方程的两根为x1=1,x2=ca。由此,我们得到如下一个结论:当a+b+c=0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的一根为1,另一根为ca。运用这个简单的结论解决一些相关的问题十分简洁。请看:例1解方程:穴3姨-2雪x2+穴1-3姨-2姨雪x+2姨+1=0分析:直接用解一元二次方程的方法求解显然很…  相似文献   

17.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

18.
陈宝义  李培华 《初中生》2015,(36):26-27
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)和一元二次方程ax2+bx+c=0有着密切的联系.对于二次函数或一元二次方程问题,我们依据题目的特征,灵活处理,则能使某些问题得到简捷、巧妙的解决. 抛物线y=ax2+bx+c与x轴的交点、一元二次方程ax2+bx+c=0的根、判别式△=b2-4ac的符号关系如下表: 一、求方程的根 例1(2014年柳州卷)小兰画了y=x2+ax+b的图像如图1所示,则关于x的方程x2+ax+b =0的解是().  相似文献   

19.
如果ax2+bx+c=0(a≠0)的两根x1、x2,那么x1+x2=-b/a,x1·x1=c/a这已为人们所熟知的韦达定理.其逆定理是:如果x1、x2满足x1+x2=-b/a,x1·x2=c/a,那么x1,x2一定是x1十x2=-b/a,x1·x2=c/a,那么x1,x2一定是方程ax2+bx+c=0(a≠0)的两根也成立.有趣的是以此导出一个重要的推论.  相似文献   

20.
三次函数的一般形式为f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d是常数),其导函数为f′(x)=3ax2+2bx+c,判别式为Δ=4b2-12ac,则函数f(x)的图像为如下几种情形:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号