首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs.  相似文献   

2.
Cui S  Liu Y  Wang W  Sun Y  Fan Y 《Biomicrofluidics》2011,5(3):32003-320038
This paper examined the feasibility of a microfluidics chip for cell capturing and pairing with a high efficiency. The chip was fabricated by the polydimethylsiloxane-based soft-lithography technique and contained two suction duct arrays set in parallel on both sides of a main microchannel. Cells were captured and paired by activating two sets of suction ducts one by one with the help of syringe pumps along with switching the cell suspensions inside the main microchannel correspondingly. The effects of suction flow rate and the dimensions of suction channels on the cell capturing and pairing efficiency were characterized. The present chip was capable of creating 1024 pairs of two different cell populations in parallel. The preliminary experimental results showed that the cell capturing efficiency was 100% and the pairing one was 88% with an optimal suction rate of 5 μl/min in the chip in the 2 μm-sized suction duct chip. The cell viability after capture inside the microfluidic device was 90.0 ± 5.3%. With this cell capturing and pairing chip, interaction between cells in a single pair mode can be studied. The ability to create cell pairs has a number of biological applications for cell fusion, cell-cell interaction studies, and cell toxicity screening.  相似文献   

3.
For the first time, we report on the preliminary evaluation of gold coated optical fibers (GCOFs) as three-dimensional (3D) electrodes for a membraneless glucose/O2 enzymatic biofuel cell. Two off-the-shelf 125 μm diameter GCOFs were integrated into a 3D microfluidic chip fabricated via rapid prototyping. Using soluble enzymes and a 10 mM glucose solution flowing at an average velocity of 16 mm s−1 along 3 mm long GCOFs, the maximum power density reached 30.0 ± 0.1 μW cm−2 at a current density of 160.6 ± 0.3 μA cm−2. Bundles composed of multiple GCOFs could further enhance these first results while serving as substrates for enzyme immobilization.  相似文献   

4.
While advances in genomics have enabled sensitive and highly parallel detection of nucleic acid targets, the isolation and extraction of the nucleic acids remain a critical bottleneck in the workflow. We present here a simple 3D printed microfluidic chip that allows for the vortex and centrifugation free extraction of nucleic acids. This novel microfluidic chip utilizes the presence of a water and oil interface to filter out the lysate contaminants. The pure nucleic acids, while bound on cellulose particles, are magnetically moved across the oil layer. We demonstrated efficient and rapid extraction of spiked Human Papillomavirus (HPV) 18 plasmids in specimen transport medium, in under 15 min. An overall extraction efficiency of 61% is observed across a range of HPV plasmid concentrations (5 × 101 to 5 × 106 copies/100 μl). The magnetic, interfacial, and viscous drag forces inside the microgeometries of the chip are modeled. We have also developed a kinetics model for the adsorption of nucleic acids on cellulose functionalized superparamagnetic beads. We also clarify here the role of carrier nucleic acids in the adsorption and isolation of nucleic acids. Based on the various mechanistic insights detailed here, customized microfluidic devices can be designed to meet the range of current and emerging point of care diagnostics needs.  相似文献   

5.
This paper presents a spheroid chip in which three-dimensional (3D) tumor spheroids are not only formed by gravity-driven cell aggregation but also cultured at the perfusion rates controlled by balanced droplet dispensing without fluidic pumps. The previous spheroid chips require additional off-chip processes of spheroid formation and extraction as well as bulky components of fluidic pumps. However, the present spheroid chip, where autonomous medium droplet dispensers are integrated on a well array, achieves the on-chip 3D tumor spheroid formation and perfusion culture using simple structure without bulky fluidic pumps. In the experimental study, we demonstrated that the spheroid chip successfully forms 3D tumor spheroids in the wide diameter range of 220 μm–3.2 mm (uniformity > 90%) using H358, H23, and A549 non-small cell lung cancer cells. At the pump-less perfusion culture (Q = 0.1–0.3 μl/min) of spheroids, the number of H358 cells in the spheroid increased up to 50% from the static culture (Q = 0 μl/min) and the viability of the cultured cells also increased about 10%. Therefore, we experimentally verified that the perfusion environment created by the spheroid chip offers a favourable condition to the spheroids with high increase rate and viability. The present chip achieves on-chip 3D tumor spheroid formation and pump-less perfusion culture with simple structure, thereby exhibiting potential for use in integrated in-vivo-like cell culture systems.  相似文献   

6.
马建华 《科技通报》2012,28(6):67-68
主要研究了图像压缩精确度问题。针对传统的图像压缩算法精度低问题,本文提出了利用小波变换后的不同的小波系数的相关性,构造图像的特征的跨频带矢量,并对其进行分类,最后通过实验验证分析算法的有效性和具有一定的实际应用价值。  相似文献   

7.
A technique for microfluidic, pH modulated DNA capture and purification using chitosan functionalized glycidyl methacrylate monoliths is presented. Highly porous polymer monoliths are formed and subsequently functionalized off-chip in a batch process before insertion into thermoplastic microchannels prior to solvent bonding, simplifying the overall fabrication process by eliminating the need for on-chip surface modifications. The monolith anchoring method allows for the use of large cross-section monoliths enabling high flowrates and high DNA capture capacity with a minimum of added design complexity. Using monolith capture elements requiring less than 1 mm2 of chip surface area, loading levels above 100 ng are demonstrated, with DNA capture and elution efficiency of 54.2% ± 14.2% achieved.  相似文献   

8.
A microfluidic glass chip system incorporating a quartz crystal microbalance (QCM) to measure the square root of the viscosity-density product of room temperature ionic liquids (RTILs) is presented. The QCM covers a central recess on a glass chip, with a seal formed by tightly clamping from above outside the sensing region. The change in resonant frequency of the QCM allows for the determination of the square root viscosity-density product of RTILs to a limit of ∼10 kg m−2 s−0.5. This method has reduced the sample size needed for characterization from 1.5 ml to only 30 μl and allows the measurement to be made in an enclosed system.  相似文献   

9.
Tree-structured vector quantization (VQ) is a technique designed to represent a codebook that simplifies encoding as well as vector quantizer design. Most design algorithms for tree-structured VQ used in the past are based on heuristics that successively partition the input space. Recently, Chou, Lookabaugh and Gray proposed a tree-pruning heuristic in which a given initial tree is pruned backwards according to certain optimization criterion. We define the notion of an optimal pruned tree subject to a cost constraint and study the computational complexity of finding such an optimal tree for various cost functions. Under the assumption that all trees are equally probable, we show that, on the average, the number of pruned trees in a given tree is exponential in the number of leaves. Furthermore, we prove that finding an optimal pruned tree subject to constraints such as entropy or the expected-depth is NP-hard. However, we show that when the constraint is the number of leaves, the problem can be solved in polynomial time. We develop an algorithm to find the optimal pruned tree in O(nk) time, where n is the size of the initial tree and kis the constraint size.  相似文献   

10.
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.  相似文献   

11.
针对差分式电容传感器,提出了一种结构简单的低噪声、低失调电容读出电路.该电路由2相非交叠时钟控制,且对电路的寄生电容不敏感,可直接将传感器电容的变化量转化为电压信号输出.相关双采样(CDS, correlated double sampling)技术有效降低了电路的低频噪声和失调电压的影响,提高了读出电路的分辨率和动态范围.读出电路在0.35μm 2P4M标准CMOS工艺下设计流片,芯片面积为0.7mm×1.8mm,5V电源电压.电路工作在1MHz的时钟频率下,实现了0.4aF/√Hz的电容分辨率和118dB的动态范围.  相似文献   

12.
Multi-target pathogen detection using heterogeneous medical samples require continuous filtering, sorting, and trapping of debris, bioparticles, and immunocolloids within a diagnostic chip. We present an integrated AC dielectrophoretic (DEP) microfluidic platform based on planar electrodes that form three-dimensional (3D) DEP gates. This platform can continuously perform these tasks with a throughput of 3 μL∕min. Mixtures of latex particles, Escherichia coli Nissle, Lactobacillus, and Candida albicans are sorted and concentrated by these 3D DEP gates. Surface enhanced Raman scattering is used as an on-chip detection method on the concentrated bacteria. A processing rate of 500 bacteria was estimated when 100 μl of a heterogeneous colony of 107 colony forming units ∕ml was processed in a single pass within 30 min.  相似文献   

13.
A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm2. A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times.  相似文献   

14.
This paper studies event-triggered synchronization control problem for delayed neural networks with quantization and actuator saturation. Firstly, in order to reduce the load of network meanwhile retain required performance of system, the event-triggered scheme is adopted to determine if the sampled signal will be transmitted to the quantizer. Secondly, a synchronization error model is constructed to describe the master-slave synchronization system with event-triggered scheme, quantization and input saturation in a unified framework. Thirdly, on the basis of Lyapunov–Krasovskii functional, sufficient conditions for stabilization are derived which can ensure synchronization of the master system and slave system; particularly, a co-designed parameters of controller and the corresponding event-triggered parameters are obtained under the above stability condition. Lastly, two numerical examples are employed to illustrate the effectiveness of the proposed approach.  相似文献   

15.
We have developed a coaxial flow focusing geometry that can be fabricated using soft lithography in poly(dimethylsiloxane) (PDMS). Like coaxial flow focusing in glass capillary microfluidics, our geometry can form double emulsions in channels with uniform wettability and of a size much smaller than the channel dimensions. However, In contrast to glass capillary coaxial flow focusing, our geometry can be fabricated using lithographic techniques, allowing it to be integrated as the drop making unit in parallel drop maker arrays. Our geometry enables scalable formation of emulsions down 7 μm in diameter, in large channels that are robust against fouling and clogging.  相似文献   

16.
Procalcitonin (PCT) is an innovative and highly specific marker for diagnosis of clinically relevant bacterial infection and sepsis. PCT supports early diagnosis and Clinical decision making. A retrospective study of two classical cases of neutropenic sepsis with elevated PCT levels in cardiac ICU was done. PCT was analyzed using Elecsys Brahms PCT kit. Serum PCT levels <0.5 ng/ml and ANC <1,000/mm3 was taken as cutoff. The first patient had initial high levels of PCT 100 ng/ml, TLC 13,600/mm3 and ANC 12,250/mm3. It was followed by drop with subsequent rise in PCT levels and drop in TLC 1,000/mm3 and ANC 70/mm3. The second patient had normal PCT 0.116 ng/ml, TLC 5,600/mm3 and ANC 4,420/mm3 levels followed with sharp increase in all the values with subsequent drop in TLC 2,000/mm3 and ANC 880 cells/mm3. Both the patients died of neutropenic sepsis with multiorgan failure. The case reports showed the correlation of PCT with TLC and ANC levels in predicting the mortality of patients with neutropenic sepsis in cardiac ICU.  相似文献   

17.
A microfabricated calorimeter (μ-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system. The μ-calorimeter has been designed to perform DC and AC calorimetry, thermal wave analysis, and differential scanning calorimetry. The μ-calorimeter fabricated with an integrated heater and a temperature sensor on opposite sides of the reaction chamber allows to perform thermal diffusivity and specific heat measurements on liquid samples with same device. Measurement results for diffusivity and heat capacitance using time delay method and thermal wave analysis are presented.  相似文献   

18.
We describe a scalable artificial bilayer lipid membrane platform for rapid electrophysiological screening of ion channels and transporters. A passive pumping method is used to flow microliter volumes of ligand solution across a suspended bilayer within a microfluidic chip. Bilayers are stable at flow rates up to ∼0.5 μl/min. Phospholipid bilayers are formed across a photolithographically defined aperture made in a dry film resist within the microfluidic chip. Bilayers are stable for many days and the low shunt capacitance of the thin film support gives low-noise high-quality single ion channel recording. Dose-dependent transient blocking of α-hemolysin with β-cyclodextrin (β-CD) and polyethylene glycol is demonstrated and dose-dependent blocking studies of the KcsA potassium channel with tetraethylammonium show the potential for determining IC50 values. The assays are fast (30 min for a complete IC50 curve) and simple and require very small amounts of compounds (100 μg in 15 μl). The technology can be scaled so that multiple bilayers can be addressed, providing a screening platform for ion channels, transporters, and nanopores.  相似文献   

19.
Cryptosporidiosis has been reported to be associated with HIV/acquired immune deficiency syndrome, which greatly reduces the quality of life and shortens the life expectancy of HIV-infected patients. In order to properly treat the infected patients, accurate and automatic diagnostic tools need to be developed. In this study, a novel microfluidic immunochip system was presented for the surveillance and the rapid detection of Cryptosporidium infection in 190 HIV-infected patients from Guangxi, China, using the P23 antigen of Cryptosporidium. The procedure of detection can be completed within 10 min with 2 μl sample consumption. The system also was evaluated using the standard ELISA method. Among 190 HIV-infected individuals, the rate of P23 positivity was 13.7%. Seropositivity in HIV-infected individuals was higher in female patients. The seropositivity to P23 was higher in HIV-infected individuals with high viral load, although the difference was statistically insignificant. Significantly higher Cryptosporidium seropositivity was observed in HIV-infected individuals with a CD4+ T-cell count of <200 cells/μl than in those with ≥200 cells/μl. Our results also demonstrate that a lower CD4+ T-cell count may reflect an increased accumulated risk for cryptosporidiosis. The detection system was further validated using the standard ELISA method and good correlation between the two methods was found (r = 0.80). Under the same sensitivity, this new microfluidic chip device had a specificity of 98.2%. This developed system may provide a powerful platform for the fast screening of Cryptospordium infection in HIV-infected patients.  相似文献   

20.
分析了当前国内就业形势,针对当前“招工难”与“就业难”问题并存的现状,提出了一个基于向量相似度的招聘就业双向推荐模型.模型首先按条件对候选推荐信息进行筛选;然后将招聘和求职信息转化为向量,为不同分量建立相应的量化规则并进行量化,使之可计算;最后采用夹角余弦公式计算向量间的相似度,并以此作为双向推荐的标准.模型在测试数据集和实际数据集上均取得了较好的运行效率,准确率高,达到了最优化推荐,一定程度上缓解了江门市目前招聘就业困难的压力,取得了良好的社会效益.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号